モル質量 of Boldine (C19H21NO4) is 327.3743 g/mol
C19H21NO4 の重量とモルの間で変換します
の元素組成 C19H21NO4
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 19 | 69.7071 | 水素 | H | 1.00794 | 21 | 6.4656 | 窒素 | N | 14.0067 | 1 | 4.2785 | 酸素 | O | 15.9994 | 4 | 19.5488 |
モル質量を段階的に計算する |
---|
まず、C19H21NO4 内の各原子の数を計算します。
C: 19, H: 21, N: 1, O: 4
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C19H21NO4) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
19 * 12.0107 + 21 * 1.00794 + 1 * 14.0067 + 4 * 15.9994 =
327.3743 g/mol
|
化学構造 |
---|
![C19H21NO4 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAAEOCAYAAAD7dcCeAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgQlpwJ1tgAAAAZiS0dEAP8A/wD/oL2nkwAAKGhJREFUeNrtnXfYXFW1h99JD6QBaRBCQogEAqFXCSAQQUCKCkgzKiByryU8NmwXoyJG77VEvHpREQ1VQCxBigECBkILLSGUhJgQIBVID8mXsu8fex1mf5OZM33mzMzvfZ555vvmnDlzzjpn//bea+29dgpRdxwMAHYHOgGLUzAvx367AB1S8EaO7T2AnYC3UrBOlhVCJE3sjnHwmIOtDlzwmufgU1n2n+PgrZjjXWrf/5SsK0R2OsgEdRO8M4H7gRHA94AxwDHAF2yX6x1cLUsJIZpB8HZysMLBOw72zLK9j4OZ1gI8Wi09IdTSa3TGAn2ACSmYk7kxBSuBcf5PxslcQkj0Gp3j7f1vMfs8BKwAPuC8+AkhKkAnmaAuDPW90exRWmvtOedbgYcDvYBVtml7Bz/P8bV9ZVohJHpJZDtgcwo259lvfbB/JHpdgfNz7N9NphVCopdEVgOdHXRLwYaY/Xrb+6rgs3dS0D/bzg4uBa5tQXvuCRwatIinAa9ntICHAP8C1uSohI7Dj398Xo+nEBXGwS0WZT04Zp8uDtY5WBB8puhte/YAppqrIHxtBa4LWr7/Z5+PynGc4bb9j3o6mx8FMurDvfZ+bsw+Z1oL5B6ZKyu7AI8Ax1rr9jBgZ+AQ4HfARfYSQiSgpdfdwXwHG5wvtJnbhzhY6OBd5wcvq6W3LTda62x8ju3vD/5WS0+8h3x6dSDlxexca/Hd7+Bm4GFgE7A/cAl+Hu0lKXhFFtuGHsDZ+Aog16yV6TKTkOglS/iecL4rNt66smNtUxt+jN73UvBoxtfWAl1iDttm+2xqcvMdaHZ4zK5ZCIlegwjfPOATzt+HfnY/lueK6KbgoDzH+wP+1ewMsveFRX7vt2TPPtNdT2ProEBGMvgQMBpYn2cIi/B0tvdi02elYl5CLT1RQ67EjzM7Enhb5sjLCnvftcjvXQLMyvL5cGCuzKqWnqgdu9j7IpmiIGbb+wiZQkj0Ggzn70F//ydLZZGCmA+8iPdxHiBzCIleY9EX76N6JwUbZY6C+T7eF3crfmZGSIr24/RKZUfgPOACYLBMLtETlWFne18sUxTFrcAE6+LOBu4CfoYftPwKfrjPkWUcfzQwEzgZOMV+48MyuxDld29PtlkU98kaJXEMcJMJ3XJ8oOJvwGWkh6J8DT+mb1iOYwyy7f8VfHaOCV/ED9GUQCEqInoXmej9QdZINDcB18sMjY+GrKh72+gMAb6BTwn16yoc/+fAEcAW4HSZu/GRT0+i1+jsCXwWOKtKx78Tn8WlP3ChzK2WnpDoNbv9/mWvtcBEewm19IREr+nsNxrYPfi/HxpSpJaeqAiajZFM0TsIuAOYgs/E/BHgP2VuIcrAQcoShTrnsySL4vmTNyXnVeHYw4BP22uYTC1E+aK3owneSlmjZKaZ6B0rU4hCkE+vObtmsqEQEr1EIn9e+QyU6AmJnloprUIvYHt8MtE1MoeQ6En0WsV+aimLgtGQlTryRei8HzzcWVl7y3UPqNIQokGo5nCLVuB8s9+tMoVQ91bdW9lPCIleYrtn8klJ9ESNkE+vvmi4RRnMgZ7zYdYqeO0cmUOIxNML749aK1OUhoMHbUbLGFlDqHurrpncA0JI9FRgVXEIiZ5QgW3Mru125iLYiBI2CImeRK+V7JfyvlEhJHoSPdlPCImeCm2zIJ+okOhJ9GQ/ISR6aqlI9ISQ6KnQyn5CoidqiYZbSPSERK9lC6yGW0j0hESv6ZE/r3KiJxsKiV7C6YhfOBq18krD+exAnYDNwNuyiBDJZHvgUuBlE7uoazsJ6CHzlCR+3WUFUSwpmaDqDAS+AFwG7GifzQWeBs4EupkQng88K3PFitwOwPHAcKAL8CYwNQXzZR0h6s/7gInAemvROWAGMNa6uAAjTegc0AaMl8shp+B9xcEay5/nHGyx960ObnBqLQtRN0YDk4GtJmZb7P/359i/GzDB9nPA/cAgmbGd4H3bBG6Gg+PNp4eDfR3catumunRlIoSoMh2A04DHg1bdBry/bq8Cj/FBfCTSAcuB02VWcLC7g00O5mRrzTlIObjFhO8iWUyI6tIDGAcsCMRuqXVTdyrheP2Bu4JjTcIHQFpZ9L5jgnZxzD7DrJv7qB5JIarDQBO2twOBmmsCWG5EMYWP8q6z474IHNjConefid7QPPu96mCDg856PIWoHPsB1wLvBmL3CHA2xfmTOgDfBvrE7LMP8HzQVb6CFgxyOJhpotcpz37RIkED9ZgKUT65ghNHlHi8r9pxXgOOjtmvGz4CHP3uFNKzOVpF9GZb17VDnv3+aaK3qx5XIUqjs7XgngxadWuspbdnmcceAkwLBHQi8d2yk0gPZl6GD5q0iuhNMzHrl2e/Z00ct9OjK0Rx9MT75hYGYrcE78PbsYK/08mOudl+40n8oNtcDADutn23mvg2ZQF3MDjy4Tm4xkTvlJj9ezrY6OAlPb5CFM7OJkIrArGbYwLYrYq/ewQwz35vNT6IkYuUnc8G2382sH8Tid3+DiY5aHNwk332ARO9v8V873Lb5/t6jIXIz/74oSFttA9OnEbtpun1Am4Mfv92/JSrXOwLzLR93zUhbMgphTbO7iQHU4LZFpsc/NG2pQJ/3XcyByA7ONXBWgeLHfTV4yxEbnIFJw6r4zmNxfsNCwlydMf7AiOhvI90uqVGELsuDsYG0Vln08wmOu/zDPft5+BJ22e+TTu7LvhsqavvfRMisXQxYZkViMVqE4/dEnKOQ/GDbB3e3zeB+CDHR4C3SA+MPjXhYtfLwTgHCwOxW+xgvIvxmTro5ODTDu5y8JKDeQ4edvAtF98qFqIl6WVdwNcDsVuM9+ElscBkBjkeB/aI2X8AcA/pIMdEoGvCxG6ogwkOVgRi97yDS111faZCtBRDraW0MhC75/HBgq4NcP7HBUK9CrgwZt8oyLHR9n8BP5i63mJ3gAUnNgVi94iD05xSmwlRMS7Ez2HdRP2CE5WiN3BzcB23ET+T4xDgFeoY5LDgwxgHkwOha3Nwm4ND9XgKUTl6Am8EArER+AMwqgmuLQxyLACOitk3M8jxV2oT2ewKXLwJngjEbqWDH2umhBDVIRr2sRWfsHNIk13fCHzGZWet2PHEz/n9KOmkCEuAk6t0XpHP9A3A3Q0POVhkwYk+eiyFqB6RINzTxNcYBTmipKOPAcNi9h8MPET7IEeXCp3LMOAaYG3QqnxmOJyjbCdC1IbpVvCuaoFrPT7oyq/Er7GRi8wgxyz8AOdSOQg/oLsZfKZCNDQPWwE8rkWuty/eXxcmHY1bK+JQfN4/h1+7Y1wRvxVlh55Ce5/ppDIFVAhRBnOsMGamaO8I7I2PhDYjY4Mu5r/JvR4H+GDPtYFw3Ul8lueudvzZwXdWWTdZwQkh6kwU3eyV8flg+/zNJr72vYBnKDzIcRbwDumB2idlaUVeYTaLxG6+fdZbj5oQ9aenFcx1WbYdRnoJxmamM+2DHA/maY3tBvyL9kGOEfa+LhC7Z6y110mPmRDJYU8roK9m2XaGbZvcIrYYE7TQVgLnxuwbRYOjoMSWQAQnA8fq0RIimRxrhXValm2X2bbftJA9+gF/p/Agx1F4v+Bq4Bb8Gh1CiARzLulpWpl817Z9twXtMjboqr6MH26SjW6kI7IadiKalmZaXSvKJbcoZtviFrzHk4DD8QkIRuAHM5+QZb9dAhs5FQ0h0Wsc0VtcpCC2Ai/gx+j9CD+sZ7oqBiHRa3x2iSm0u6hAswH4urX63pXoCYlea7T0VKD9TAxkIyHRa17R64CPZEbp1IVET0j0mrrQ9sePRVuOH4smJHpCotfwdMfnbWvDT60KkT+vONFbJFMIiV5jtVKcWjAlocpB1IOOwMfxCYAfwY8suBE4JdhnO/xa0N+IOc5ltk/LJME4inRCzUwusW2/1/MVy3Kz0wCZQtSI/viV/hw+WcjD+PniUSKMSSaKfez/u2OO9TvbZ2S+H22WCeSK3JZHZ/yas5vxa+gKUW1SwJ/wQ6iuw+d2jJKFdAP+x8puxVctlOgJgIF4V8difMIBIarNB4EPWHf2M7R3S20AvmB/Oyq3vIFET7yH/Hmi1pxu778i+7THqk2FbAXRiwq0opKl2U+IahAty/piEd/phk8InI3tW0304oRNBVqiJ5LHDvb+ehHfOQ5YqJZefKFNkY5GajaGRE8kh81B661QZgI/ybHtIgpMeNvsorcT3gm6guyT7IVET9SHqBGyG34p00J4Ez+MJRvHFCp6zTA4OW64hfx5xYme7CRqxVP2flitf7gZRC8abrGUbYdbqAVTGIreilpzMz5C+yX84GOJXoUKrERP3VuRTF7Gr7o3GD8T43jSS5YOAP4DuLTM39gN+LUd/xZ8It2mED2N0SuPjvjUW1uBZTKHqCFfBn4M7A08gM/1uAZYgh+/d2YZx+6FX950DvBVfBDkQWDnZghkSPTKo78J3zKUekvUlq34xeOvAT4EDMW7qF4HZgFP2n7r8QkF4oarTML7CSO/9GrgRBM97FjfJD0+sKH5nvkGxmfZdrtt+7ier5wcbDZ6VqYQTUp34PP4KHGfZu/eKnpbnv2EqAV34LP8nFyFY58NLAB+DnwLWKnurZCNRL3ZBeiL9+dVmtvttT/exzevmVp62VpzA+19iZ4riZ5o6WfweXww46hmHrLSx/rya4C1eq4keiKRpILGSSWfwQHAvfjIMMAB9prZ6N3buOEWmmUg0RPJZwf8/NtV5F6etBSWAlOAqUBP/DTUHwD3NEOBzbW04wm2baqeq1ieNDsdIVOIOrCPPX8vVfE3uof/NHr3VkEMtfSEnr98vNtMoqc8euURpd7SQuiiZSpdtfRam774LDUr8OsSCJGkhotET6LX+A+cEGrpVc9gUc58jdFL0AMnRL2fwU5NbLDT8VmTt+q5kugJPYOtIHoAbXqmJHpCz2CzdG9HAnva31r/QqInGpOBtX4GG1H0RgOTgRfwU802AXfhV0sXEj3RIHwNevaEhR19FpTVssi23fDzgBn4MWUOWEc6caDDJx+8Gj8EQxTGdLPdaJlC1BoHIxw4B3NljTQ9gHH4miASu6X4hKF9bZ+O+Oyrbbb9KeB9Mh3gBx/HCdp8s9keMpWog+h9wETvX7KGnyUwHng7ELu5JoDdc3zncODVoBU4roXt1wUYay6AuHm162379nrkRB1E7zwTvT+1sh1GAdfiAxOR2D2Cz37asYDv9wJuCL57B35N3FZhR3x22MWBDV4DTs2y7w62fZWKn6iT6H3JRO/nrXj9UXBiK2n/3GTgyBKPdzZ+alVU6I9pcvvtjl9Ob20gds9Zay+Xj3Mk1c9uIUSc6P23id4VrXLNnU2cnggK6hpr6e1ZgeMPsVZiJKITab4gx0H4YM6mjJbxaXh/XhxjbP8HVfxEnUTvRhO9TzT7tfbE+9teCwrqErwPr9Jd0U523M32O08Awxvcfh1M1KYE9tto4rdvgcfYFT/Mx+HTaHdSERR1EL0HTfTGNOs1DjQBeicorHNMALtV+bePAObZb66m/JXT60FX666+GNhvlbVgdy3wGPvR3me60t4fA4apGIoai95LJnr7NNu17W+tkLYSumCVpDdwU3AOt+Gd+UmnL97n8WZw7vPts94FHiOXz/SSJqgMROOK3koTvaYJNuYqaIfX+bzG4n2HDj/+7+iE2m+YteLWBWL3jJ1/Id3RyGf6JO19phPx/s6IXsCNwT63N0hlIBpb8Lqb4G1wtW38VJxofNisoBCttoK2W4LOc3fgUTu/TcAEkhPkONhaxpEfcivef3dagd+PfKYLKc5nOtbuVRTxPlpFU1RR9PYw0ZvfqNfQywra60FBW2wFLamthswgx+PUb2ZCFJx4hG2DEyMLPMbOdj0rgmPMtC5roT7TocE5bE5YZSCaS/RGm+hNb7RzH2oFY2VQ0J4vsqDVm+MCsV4FXFjD346CEy8F9ltpLeNBBR7jACrrM80W8dY0NVFp0TvbRO/PjXLOB1L6+LAk0hu4hfZBjj5V/L3+JizLg9+cZ63lQqeEZfpM2+y8D6vQOR4J/LtOlYFoftH7ooneL5N8nin8eJrJQUGNCtqhTXIvwiDHfOCoCh9/uLXi1gc2nEHhwYla+0x7AzfXsDJoBHa1MtBm9/FXkrCSRG+Mg+scfDyJ5xcVtNlZCtrgJrwfI4CnSQc5xlPYvN98rbLbgi5jFMkudFBmvX2mmRHvVkxFNRT4Ge2j6dFrmt0j0eDsjh/X9kZwcxdZQWv22r6zXecWu+7pZo9iiIIT0wP7bTC3wN5F3INMn2m+ObXVfB6mV7gyaFRXzgLgv4DfBRVZq1YGxbTuRjj4mYMnHMxzMMvBrc6vZ1N3fpxRk83AJ/FstelKJwSiv9JsUAgdSad1inIAfod0DsB8lDOntpp0yqgMmnUmRzGunCQPf0qS4F3kYJODNgcPOPiNg9sdvBUFNFwdg5/dSDvH3wG+0OL3qy/wt+Dhn4RPbpqPa/D5/cYB2xXRMixnTm2tOD6oDFYBFzTJvc7MQ1ioKycz4v0YiniHgne0g80OXnWwV8a2ng7+VO8UU4eQ9juJNGNJp276N/nTXvWgsDVIomEroc+02Dm19aAPcGsJlUES6W2VU7munMzhTxeo2ICDqSZqh+TY3tXBXGsFDqrHOZ5I2lEu2rM38Czt/VqlLq4UN6e2kXymYWUwH3h/A517tjyEz1Kez7QPtR3+lHTB28HBVuddZHH7fdOEsS7zv0+3m3WXNC5ny2wCab/WgxRXO5U7pzaJ7GXX0ChBjnJ9pj1LqAyOasXC4uAYE7Pf5Nnvg7bfNfU4z8/ajfqt9C2WMUErbQX5xxuVO6c26WRGvB9MWPe8Ej7TMD3aCQVWBpUe/tRooneGidmP8ux3kO13Uz3Oc7zdpO9K1/LSj/YRvkm0n1ERN6d2nya1SVgZrATOTUDLvNw8hAfg114Jp/r9sMTKoJThT40seh8yMftpnv2OsP1+V4/z/I3dnMukaQWRwvshou7qS/j0WeXOqW30yuDv1DfI0Y/q5SE8ooTzKXX4U6OL3qhC5tg6ONf2q0tjK2q5nCE9K4pRpIc6hP66V4HP0ZrLLI4NbPEy3pdWbcr1mXahsDyEpVDq8KdGE7ojbRxeJwcdHbzjYLmLCQ45+L2J3on1OOcZdkMOQxRLd+u+rLJWxVmt5sPJQiUj3nGU6zONpvoVm4ew1MqgmOFPjSB0HRyc5mCKiZdzcL5t+6n9/7Uc393HkonOc3UqL1F3YDCiFH5l9vu8TPEe3Wgf8X6gQt38SuQhHGLnFuYhrEV6tFpVBtUWu64OxgbrXThLAz8xGnPnoLcJ2hYHP3SmLQ62d3C+gyU2W6MuCwR1sBuw1Zr5onj+Yg/yx2SKbfggftCvw6fVKtWFEpeHcJcCjxHlIaznVL9yhz/VU+z6ORhv3dZI7P7tYJzL4spxMMjB/cG+G4O/X3Nwcr2uZaAZf5nKZ8k8bjZ8v0yRlf7ER7zzfXc88Bal5SFManq0Yoc/1VPs9rBW3LpAtJ621l6nAr6/n4P/dPA9B192cKLz4l83Dgya96I0ovV8h8oUseKTGfE+MGb/SuUhLHZObS3JN/yp3mI32sFtNofWWVd1cjOsWXuKGfxelcuSC/NGs2F3mSMv+1gFG6XduoL2fq1K5SFslPRoxVYG1Ra6KDgxPWjVbXAwyRWeHi3xXGzGvl7lsST6ks5OIwqjm7W4orFw9wOfxGcqKScPYeac2nrlISyFkXa+Ufd7PDUMcjjo4eBSB68EYrfMwQRXuM+0Yfi2GfoHKoslMcrsN1umKJrTSa8ZErXsluEd/TsXeIyk5iGsVGVQbcHpD4z/jM93F4ndqxac2K5ZH7z/RcMtyiHKUDNFpiiJnUlP9foihQ0ZaaQ8hKU+U2HEuxpZhvcBrrMWtUvB1rfgTgdnugYcRlMsGm5RHp8i7YQWxdOb9AyIfFRiTm2j0B/4B+2DHJVoeeWaZtdSIw803KI8vmH2+5FMURJ7m/1eidknLg9h7ya2TQoflNlg1/wifqxhsUQt42w+0xGt+NBFwy12V/kriV+Y/S6XKUrieLPfQzm2X037YStPAufQWlP99gFm2vW/y7YR71z0MNFcQPu1W8YDO7XqA5cKahENtyiN281+H5cpSuICs98tObZfRfPlISyFzCDHP8kd7BlgwvZ2IHZzTQBbvpxruEX5RHNAj5EpSuIrZr+fxjyje8lM73Em6Yj3MuDDwbZRwLXWGgwj2WejJBjtjKThFuUxz2w4XKYoiZ+Y/b4qUxTMIPxwliizzO3W8otagZuBP1HfaXaJJRpucb9MUTLRSPoeMkVJ3Gz2u1CmKIooyNFGel7yGmvp7Snz5OaTZqwbZIqS6EN6TqcojYfMhsfLFGW1lB8FdpA5shNGfSJHqJZ+LA3ZTzasN9Fa1ZPx2VqERE8FVjZseLqTe0qd7Fek6EXz+hbJLCUh+5XH9vj1ZDfgE4KK7EzA++4+K9FTS0+tFFUarWKnTjm6r3oGJXoSPdmvaSuHxbJh+aI3UAZToZX9GtZO3fAR2zb87AuRR/T64LM2rLWXUKGV/ZJJ1DhZksN+S/DDVkQe0YsMJn+KCq3sl1z64KO3q7M0TmS/EkVPBisdOeIlerV6xuTPk+jVnR72ehefyFKo0qh1xSD7SfTUSpENW8pGsp9ETwVWNpToidyip6axumb1pCveSa/hFhI9tfTUSmmZSiOFhltI9CR6Ej3ZTxTYo5ANJXoqtLJfy9ipM35xny349PEij+hF2S3eRdktVGhlv0a000Ary0tJ59QTMaK3ix44FVrZL/HEjQWV/YoUvT3s7yUyR8koeivRq+czJvsVKXofsr93kzlKohvp4RZaPrM80VOlUVrFIPsVKXoSu8o8jBpuUX4rRi2V8kRP9itQ9O60v3cFJuEDG0JdM9mwcWykSqNI0bsZ+C2wHvgEMAM4UKYpupWirkVpaLiFWno1F72twKXAYcBMYC/gMeAK2mdWFmqlVIMBaLiFRK/GohcxGzgc+AXQBb/q0n1BS0ZI9KrZUpb9Su9R6BksUfTAL783DjgZ75gfAzwHnCZTSfRkv0TaqSPQ33psS2Wm4kUv4j5gf+BuoB/wd3yQYzuZTIVW9kuUnfqb8L0FbJKZShc9gGXAh4HLgY34IMdTJoZChVb2qx1xY0FlvwqKHvhxZxOBQ4BZwEjgcRTkAO/3HAsMt/930uMk0asSod/TyX61o7sJoLPXPwODtxK9ga8BbwS2cHifykJzDfwW+KQJYkc9OrFMNvudLlPk5Ciz0WNZtl1i234vM1WPM81/4PCO01NbqEUyHlgRCN1M4HPAL030XMZrLbAAP/bxHuAPwMXAPhLD93jabHWoTJGTs8xGd2bZdqVtu0pmqi6DgAfSLZxTvwWua5Ne6wH4IE5bIGaP4CPaqWC/k6wScDkEMHy9DbwKTAf+AfQFhgJfB0bHnMtFwJeazL6LzCa7qljl5Atmo//Nsu3Xtu1zMlP1SQHjoOursGoNuBfA7ddE1zfaul6RgLUBt+EHcediAD7i7Yp4zcbPSjjR/h8fc/yZbLvIcyPTAR9x3Go2yIZGDMDV9mx8O8u2v9q2j8pMNWPhIeDmgHPg1oO7rIEvJgpOzApEaTXel1loYgarDNhg39+SR/QiX0writ5Au+ZlObYfhJ+admGLF7LrzU4XZ9n2hG07UlpUU1x3cBNN+By4e8ENbKAL6GVC9XogRotNgHYo8Zj7BuKZq7u7HBjRwqJ3kF3zczm2/ySw1SS7T63IfWaDk7O1OmzbUOlQfcTvo+DeNuFbAu7khJ/wUPx0u5VB4XrOWnudK3D8zIj35gzReyjYtxVF71S75nti9hkLrLH9FhDv82xWZtr1H5ClV7HRKtVu0p/6Cd9gcA+Z8G21FmDCghzuUGi7AXquDFpi9+Kn3VWDj5COeG8O3v+jRUUvZbZ+0uwyDz+zIBe744M+Du8DHE9rRb+X27UPyPi8H+nAmKizqKTAjQO30cRvFrhRCTinMeAmp7vhv34AP4ykFuc20IQ1auWtyuiuRaK3Fh8Fzvba1OCi1xXvl5od2CFqxS0hncU7G51M7CIf6WPAsBYoTF2sUt6URej3M1u8IM1JVIuqXZBjXB3OoQu4seBmBz7HVdYCHVyHFs4465JED+uoDNF73LrE2V5vNajoRT7TcED3IhOxPUlHvLcC1xIfsT0+OM4q4IImL0S72bW+kWXbSbZtirQmWcLXE9y1geDcCa4GU7Zcb2ttvhn89gJwV4DrU2ejHAK8Yg/suyYIJzVh93Z3E+u1xPtMs1UGccOf+gC30j7I0aNJC9Dhdo1PZdn2qeD6RQLF7yxw7wRBjg9V6XeGWStubSB2z1prr1OCDJIZ5JjeRKJ3kBXETcQP6M7k4CyVQdz+YwNBnQ+8vwkLTgrvyxuaZds37donSF+SK3y7gXs4I8jRxbZdbq2wITm+eyG4L8cc+2Bwk8BtCo4/BVzScwF+DO+IjsThxgYVvQ4malOCa9lo4rdvGZXBvXh/aC72Ap6hNYMc19h1j5O2JFv4OoK7MhCnx8F1Nj+bA5dj+IJ7BNy7GZ918KLmpgStuo0mfvs0kFEGA8+T9mtNxDuwG0H0ulqL60XaB2kmUt7UsjDivRQ4JWbfzrQPcjxIa0xru8Ou9xzpSmOI32Hg5oK72v5fBW6LCddZ8aLnulp39cUswYlBDWqQyKcXFdwZpAcuJ1H0+uJTjL0ZiN18+6x3BSuDqRmVQdzwpxOC81kJnNfkhSiajXG09KRxhK+3b+W9J3qPWrR3kd+WU/QeCsRuHrjPg2v0pStHAr/BJxSYaw/z+oyuy5X4NUzqyTATn3WB2D1jrb1q+EwzgxyziB9iFGX6buYgx8F2XRvNNXJ9nspAJFQAV5mYfcTEbGKM6H0a3NMJDE5Uip74oRtRwb2T+icpjQra5qDlNYXarZ9yKDAnR2WQjbGBML+MD640Mh2sy/9I8Fy0BffjWWBv6UhDih7Y3N0t4A7PIXqtkrX5LHx68Ggu8El1KGinZRS0KDgxMgGVwV/yVAZ7mxiEQY5Ge3bifKaDyD78KSU9aTzRGwmuDdxTPvCRKXotxW7Av8gf5KhGQXspKGgrg4JWb8KId76ZHN3wQzoiX+kDCbmGfPTD+0cXBffg3yZqma6czIj3X/E+V9E4ogfgfmTd3M+1uOiBH4JxBelEpk8B76vC7/S31tBbQQGal6OgJaEyeLiIyuCDgYAsB85I6L3eg219pk9TmM80szI4WbrSWKK3Hbj5NqC5b4uLXsTh+IzLhfq1CmW4FbT1QUGbQfWCE9WsDPbM03qaTPsgR1LEPNNnusXOtdgkGIPx2Xtq2TMQlRE9sFRVDtwvJHrv0Qu4ISi4dwA7lnis0fhs0OUWtHpzGLkj3pmkgEuDltRLwIF1Ou/IZ/pocD83UL7PtAPbRrz3VdFpCNEDcHebf2+hRK8dZ5NepOg14JgiC9pjWQpaI0f/etE+yPHnPJXBSNIDwtuobZCjm7WiX6Z9QtkJpJd7rASHFlEZiASJ3h5e7JyT6G3DENKR1S3WlcmV/LSHtXBeCQraMitozbSU59mkI94LgWPziM9E0pmtp1RYdDKJ85lWay2QJA5/EvGiB+DGS/RyEuWZi7qoT+D9QxEDbHs4v/fVKhe0JFQG0yjcr3US6YW0l1H5sYdxPtNazROu9/AnkUXYJuZOKOC6gbsG3C9lp5wcYa2GqKDfhR/b1VbHglbvyiAMcjxJfMS7P345zjDIUW6lkMtnelSdbDI07BmcCN9wlVkWQYi6sQPp6G74mkxzpl0qhDDivdq6+LlIAV/G+zg3UFpG7Tif6V4JsEdH4IqesGIDzHfwlKvO8CdRZKvvcZuDO1y2KInf46OSzxHv02oVeuFTdkUidDvxq9wdCHyiyN+IfKZzaO8zHU8CBwpPhSOcFz3nYI3zCUlFHUUvWlGtn2whKkipEe84svlM5+J9pt0TXcqgl4MbXDp7xx2u9OFPooxb0dUSgLa10BxbUTuGkvZrbcZHr0vxa43CR0XfpX126LNpMJ+pg7MdrDDhW+gqUxmIIm7BEKt4XpctRJXIFvEu1JUyGu8jjYa5RMGJIxu61MEQB9NM+LY4mKggR+3Mf6SJ3hOyhagyR+In8UeZS3L58TpbC+4J2i9deS3x094aTfg6ORjvYLOJ3xOu8MpAlGH6aOrZX2ULUQN6AzcHYvYPfDID8IN4x+H9f9H2pdZKbNoBvs4HOeaZ8K128RFvUQGTf85E79eyhaghF5NeWW0TfubK1kDsXgAuokUyFDvo7eDGIMhxm4uPeIsyzH2V2flK2ULUobsbrtEbRWLzLV3ZzOI31oa0OAcLnNbjqIqZrzPR+4xsIepAD/yaE/cB58sc4GCog0dN+DY5mBAX5HBKZVW0ie820fuwbCFEYoSvs4ndFhO/b2VsP93BP4NW4UYHMxxc7jJcAg5Oc7DIwSUxv/ek89MmW8K8z5roHaRHTYjEid9xDh52PntL9NlEE7rF9vdXHfzAwQv2+aMuWBbUwTn2+eUxv/OagzdaxaxLTfR21iMmROJF8BMmYA+FQmjbOgaCeL1EL/uldrJV0LY06dKOQjSb6L1sXdlBObZ3shbfZudTftVd9JI2zWuAndMySG3WIyVEogVvD2AEMDUFb2bbJ+VnvdyEn5p3YhLOO2GtqVUDoHcbPsmhECLZRMsLzMqz3/MZ+0cc6ODcHN/ZDr/GR7OLXp9BQBfYcb6eJyEST+TDW5Nnv5X23jvj87H2ysWbLSB60foE77yj50mIxLPe3vOl0IoyUK/L+PwqggBHBtNapHv73gI16t4KkXwW2PseefaLkjJk9uDeTvmED9vgvC+wKim6khbIkOgJ0Ti8gF/ZbYzzK8vl4nR7n5qEk5boCSFKIuVzCf4fPhHB93O02E7DR22npfzyBXVH3VshRDlcDZwCfMXBYOB3+C7rTsBHgC/hU/RrLn0O3vCVA4NlCiEaA1tr47cO2oJUVNHrfpexCly9BycnKV1OB/y4nI54/0CbHichGkr8egOH4RcXWgc8n4LXs4mkNWwWp/wC5NmO9T4glfKryzUtA6yVt1yPjxCimq2rpCB/nhBCoieEEM0ueot0W4QQrSB6u6ilJ4RQ91YIIZpU9NqAZcAS3RYhhBBCiArQMQHn0Af4GHAh8FHgIGAD7XNpnQecDDyW4xjD8Ys1b6ZKObiEEKISXIAfkR2tKh/97YDbSGdumGaf5RLpM2z7FTKpECKOevr0zgBuwGdqOBe/yPKOQH/gp/hJzAfrFgkhmqVbPd8E78gc+wwM/lZLTwjR0C29I4ChwBRy++kUxRVCNI3oRd3WGboFQohaUq8kov3sfWGR38uVX6urbqUQIsmiF+Xx21Lk9/6M991lsjtwqm6nECKpove2vRebIXlcDqE8Q6InhCiEevn0ohXP99UtEEK0gug9gp9neyp+NoUQQjS16LUB38HPuLgL2D9j+874aWnlcgLwQ/ut/XS7hRD1nJFxLXAVfgGQ54DZ+HF7L+Cjun/Az84olSuBHwNLTVwfB47VLReital3woGpwF+AVUAXE6dXgL/hl4ebb/v1MyH8e47jdAc62/Fetc92BL4LPAQ8gPcf7gbcq9suhGh2+gBzgYtkCiFEM7Mj8AywGvijzCGEaIXu+zB8QGMe8BmZRAjRKnwdeFhmEKK16dDE1/ZVfGQY/LS3A9GiQ0K0PJ2a+No24IepzAF646O7p+iWC9HapJr8+noBo4D1wEyKT3AghGgy/h8wlMOG4unPVAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxODowNDozNyswMDowMKH1gUkAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTg6MDQ6MzcrMDA6MDDQqDn1AAACY3pUWHRNT0wgcmRraXQgMjAyMy4wOS4zAAA4jX1Vy47bMAy85yv0AxH4lMhDD5tkuy2KTYA223/ovf+PknKz1qJC7YiwrDHtIWeUQ8nj++Xbr9/l/aDL4VAK/Ofn7uUnA8DhteRFOT2/fL2W8/3p9Lhzvr1d7z8KaSGLZ+L8iH26314fd7Ccy5ErNwLjvGrgDF6gwjj2Z6lcc51Q0Vo5UkVsSrBAcuaUKizKVI5YSciXOWVDkvXGGuskboYLoCaQqhOyc6xbc2ird7cN2LuI90JBDE1XwJ5ArAJGKgF0Q8hy/QO0BEJFs+QQtKEL9gXQNyCzGiSZhtKWGRG2d3cgEMtnAER1xRtxg5qYi4wP9s6yhNL2/kauoZEoAndwpRU0OwS1c2tb0q7YO6+Q2SGsruo2cjZSNlkhs0UhJCJiTCRAaKqtkG0gpTnSYK8YjJbIbBKlKrolD26AriugDUJmrAKZktTcloS83IrUAEZ1Yh1BQ3sruWeTJGRB1HqUIAqgugTiyKiC2nsStx5aWgmEKJBYs9TMwatTU1/xJh5V5/BNmiQ852xLoETGNFjDUF0gpbPhSnOxGXxJZKjXxEfPHQFXxXy+Xj5sEdumcbpdL/umkSftO0NMCu/2xxiyexxj6O7kmJS2+1Vi9N2VEsN270kM3x0mMXA2Eo6Ak19wBJpsgSPwpH7JgDKpXDKgTmrOaWh1Uq1kwD6pUzKgTTLEgfFJbpiBZl1hZiacBITBkmjSCWYgngSBUReSqfGDJ039lSzFOwNqiZiKR+NzbSoE2d8kYd3PL59wFsDc7pw//l/i+vAHawg+zU77FEoAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAUV6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAKJEtkDluwzAQRa+S0gZoYvYlagKoSZVUqQxXOkQaHz6fcgoB5NPjLP/++bjvHw+W/dDjuHxf8e3X49Ab7nxcXkzB9v1L9rfn5caTKcsHDtlMPDacyqptIetUA6IZ0t49bjI1qX1sNFMj7NTSOXNsPNv/pRDXGptOFRFdhCgE1W26sdcilV2yHItmODSd1TiWVOqagzCcZ+gicCUHT+9ytJcpGK6gaBC/Biq8slVHvLr0nFvVixxasIXUuV6SAOEnkbkzYwiM08LaECua4iSZ5gMLByOg9dCoZJEuJj2JBGsMm5a6dkFNrmpqSMjVZIWCbFQBUiLWXcUQiU3hRsPthlNlGFpjpSo+kam5rmwh90IK3/kMlzlcTqQhhCx1BrXyuI7fn3ee9PwDjWFrR9dL/AwAAAAASUVORK5CYII=) |
関連化合物
ヒル方式による化学式 C19H21NO4
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |