モル質量 of C9H28N3O15P5 (DTPMP) is 573.1985 g/mol
C9H28N3O15P5 の重量とモルの間で変換します
の元素組成 C9H28N3O15P5
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 9 | 18.8584 | 水素 | H | 1.00794 | 28 | 4.9237 | 窒素 | N | 14.0067 | 3 | 7.3308 | 酸素 | O | 15.9994 | 15 | 41.8687 | リン | P | 30.973762 | 5 | 27.0184 |
モル質量を段階的に計算する |
---|
まず、C9H28N3O15P5 内の各原子の数を計算します。
C: 9, H: 28, N: 3, O: 15, P: 5
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994, P: 30.973762
次に、原子数と原子量の積の合計を計算します。
モル質量 (C9H28N3O15P5) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(P) * Weight(P) =
9 * 12.0107 + 28 * 1.00794 + 3 * 14.0067 + 15 * 15.9994 + 5 * 30.973762 =
573.1985 g/mol
|
化学構造 |
---|
![C9H28N3O15P5 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAACmCAYAAABHjzOXAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgI0m+jywgAAAAZiS0dEAP8A/wD/oL2nkwAAJYBJREFUeNrtnXeYVdXVxn8zFAFRKXaDgIIN7GjUYMESK8aG2ILYSDQqioXYcN8BFDUa0ZgvWKIfMSYiGluMfjaIGnvDHrso2BAR6eX9/jjrzpw5XJiBuXfuOcx6n+c8M3efcvdZe+33rr322muDw7EcEJwgeE7wpWCSIAhWsXPbCiYUuOduwT4uPYfDkSWyO1swWbC/oIOgl+B5wZ12vrdgaoH7XhMc7hJ0OBxZIbtKwTTBIYnyzoJ5gs2d8BwOx8pCeJ0FErQtcO4NQX8jvGmCvRPHB054DocjS4S3nWC+oKLAuYmC043w5gjuSRzfO+E5HI4sEd6aZuGtXeDch4KDfEjrcDhWJtJ7R3BuomxXwVzBWk54DodjZSK8PoIfBFcJDhGcaz67M+28E57D4VipSG9TweWCOwXXC3aLnesquLTAPUMEW7r0HA5HVohue8EIQTuXhsPhWNkJ7182aTHCpeFwOFZmsvuZkd0MQUeXiMPhKCbBrCPYRdBDUJmC+jxphHept47D4SgWsbQSjLWZzwmCdwUfCXYqY532MbL7VrC6t5LD4SgWuVwleDE+bBScJ/i6XGQjeNYI73xvIYfDUUxy+Vqwf6KsUvC+4Kgy1OdgI7upgjbeQg6Ho1jk0s7IZYMC5/4huMT+X0XQrRHqUyF41ep0hreQw+FoLMK7RzDM/j9TsMB8fRuVrD7D6KddmKjmvJxP8OlwOBzFJL1pgr0LWFrvCI62z5cb4cnWsI4WrFvUeoyjmQJvKyAFTvaWcTgcpSC8G2x2tk2s7HjBd4L2sbIugjGChUZ8s4z41ilKPQIDjeze1xhaeMs4HI5SEN5qgkcEnwj+avFvX1toyOqCHonrtxCMEyw24pspGNWQ5V8aQwsFPlRAynGst4rD4Sg18W0lOELwc8GqVpYTLDKC2yRx/faCh4z0pNb8R4HzFZZ/ZlU5TjXr7k2F8gc9OxyOpkmCI81nJ/Ph3STYMHFNb8EEHcnLRlpfK8dQBVrVcyjbSoHJdu9hLnWHw1FO0utkvrv8pMU8+7x+grh6KzDRiEsKfKYcgxVoWYd1d45d/1KhVO4Oh8NRDuKr16SFAnsrVFt7UuBjBQZpHM0KWHdtFfjKfHf7u5QdDkfaiK+nbXIdTVqszlPKcalCzTI0BSqVo78C78SI700FDko8q0KBIxW41SXrcDjSTHy9BA/phOrYuW+TkxZGfP0UeN+suPsVGGNHUGA7l6TD4cgO8VWxswKPxyy5JSYtFGipHL/SpdynwF/M+humwI/KsZdL0eFwZIv46jFpocB4hZoMKAr8UYGbXXoOhyOrxHewAq/HiO99BQ5ZCuGNV+Bal5rD4cgu6UGFcvStJr4cv4kR3HPmw3tCgckaTleXmMPhyD7xRQkBjskPa43w/qIc/ZSjj66htZVXqoqtXWIOh2NlGu7WGtJWl+c42oa/jyqwjUvK4XCszIQ3WIFZRnqLFLhdofQJRx0Oh6OUhHelAgMKnruMtRQYpcAcI74FCoxVKF3CUYfD4SgV2Z2p4Wxa53Uj6KTAaAXmGfHNs0mO9V2KDocj/WRXxdY2VJ0ZX4JWB0F2MaJbaMQ3S4HRGlmchKMOh8NRKuvufiOt360AWfZQ4G4FFtszZpz/M87C96t1OBwptO52MLKaqcDaDXjOlgqMWzCMyS2bMQ+YBgQnPofDkSbr7jGzzIYX43l9N2cnYAIgO6YCZ+K7nDkcjjJbd7sa2U1XoEORH98bmBgjvs+AwU58DoejXNbdRFtadlEJv2Zv4OUY8X0MDIIlE446HA5HqcjuALPuvtEVrFbir6sA+gKvx4jvbaAfnjbe4XCUlOygQuvzN53GxwoMacSvbgYcD3yUsPh8mOtwOEpGeIfZvhefqF+UIKCR0cKGtfOA2cDp3ioOh6MUZFcpeN0I79dlrs6dZuUd7S3jcDhKQXjHVVt3LHuLxkbATUZ4p3jLOByOYpNdM8G7RnjHp6BK1xrhneWt43A4ik14pxjZvSdonoIqjTDCu9hbx+FwFJPsWgo+MsI7MiXVusAI73JvIYfDUUzCO9PIbpKgMiXVOsMI73pvIYfDUUzCO0zwoeDgFFXrBCO8W72FHA5HIeLaRtROtilYU7BjoqyVoI+gn6CXhaO0SNnrHGmEN85b1rEcfaCT4A+C5+z4vWDd2Pm/CLZN3HOEIOfSy15jPyb4VaLsEMEbsc87Cb4QPGON/67gxSRRpgAHGOE95C3rqKf+ry+YaoS3vWBHwW0WZtXBrvlY0Rru+H3nCO51Ca5khGeW3eeCc2LnmwvuEjyQstfZzQjv396yjnrq/+8EDxcof1ZwiRNe0yO8vQRfJcNOBJsJFgtWTdHrbG+E94q3rKOe+v+E4LQC5RfkCc0I72RBz9hxlRNedgnvdcH9seOFGOENEjxT4L5mggWCrdLzNhd3h7MmwvC7vWUd9dT/twT9C5SfJHg+Rnhvm9WXPz5xwssu4V1tExL54+IY4Z0geLHAfS0Fi0TdO5M14ttsEEXK6AtvWUc99f8RRYlkk+WXCMb7kLbpDWl/JpguaJO4ppdgvlKViklrGOHN8JZ11FP/hwueTpRV2KjnXCe8pkd4zcycvzofYCxYze77c8reprkR3kJvWUc99b+DxZPeYf7qfQT3Ct7M+6ed8JoQ4dnnTQSvWcM/LvhGcLcoeWbjFXmjOUZ6rb11HfXsA2sKRlhf+D/BMMEasfPXCnom7jlANGqyW0eRGnsdQdtEWZtCMXaCTW2Iu0GK3+hbI7y1vHUd9dD/iwWdXRKOrKrwJ0Z4XVwWjjrI7uBYLkffBMqRSTV+0wivp8vCsQyyqxC8aoR3hkvEkVVVfs4IbyeXhWMZhNffyO7TkkQa2PTvDomy3QQXJlj3aMFfBf8SXC/o4c3jWA5Ne9wIby+XhWMpXJSPPJDg5FJ9yauCIxJlJyraTT7/+Q82RTxAsLfNnMwU7O7N5Kinpt1nhPcLl4VjKVw00Mju/ZJl/KmL8Gx92nzBRolrLlG007zDUR9N+6sR3rEuC0cBHmphRpUEx5byi141Zu0YO86IEd6Jgv8UuK+bLWFq5c3lqIem/Qo0BtTbZZEqbAS8BPwXKJv1LTjVyO7NkmbqNsL72qaA88e3McIbJvhHgfvaWgU3cp1xLEPDfgoakCjrBDrCZVNWNCdKLTYr6s4str/PAX0bVUOuobV+wcNqwfuCw0rNrHUNaQcl17RZ+UaWhsgj5x3L0rBRNpQ9JlZ2AGhShl+qHdHGRBeRnn1DlgdbEWUckR33AMOAKbGyp4E9GkVDcpytgDSMFwQV5Sa8XoI5gvUS1wwWvOkd2lEPwpsImgpqvxIQXm9gZswqehsYkBHiawUEYJ7V/wvgkNj5NkQZSr6MEd+jQK+SacdVrKrAVwpIOfZvjLFzfWZpxwueF/QWdLHz01O2UYwjvYR3Neh/QX/MMOG1A26MDf3mJSyil4lS2acVuwLvWF0XAWNY+prrtsBQYHqC+LYpgXV3kQJSWHIUWSrCu1FRCu542f6C38c+t7RMo8/a5s4PCjyeyrE8hLceaHoUeJw5wusLTLaOPx8YReTKaWHW3UcxYniWdPWNdsBoIzkRJZ+ob/B3B7MIf4gR5ThgkyJpxhoKTDPrrk/6VTma0T3bO7WjbsID0GDQK6CDMkJ46wJ3xcjsGWCLAte1BAYBU6ntA9utvNVvfXisTnOAi1mx+LZ1geuAuYC2Wpt/K3CTAhs2SDMCI8y6ezQLZNfMrD0JjvKOXXQ0B24DXiOaJV89Y0TXPUoFVYvwmoNeBd0VEZ5WAz0RBSOrIkWVrzDLbZqRxY82xKvLT7eqXfddYii4XSPLfj3QeHhoQox8Ny/CgzeshBvfO4OPjajmKnCdQs3WictBdmsq8IM9JxvLDQWnGOF9I/C0P8XD1kTp2xU7PidyKK+Scq1obpbcj6CRtQkPQDuDFhnhnWszuAK9APp5Cl5gY+DxmNwfhOW2ZNoBw6k1ufGP60GblVj2laBTo8zSUpSSa9OTKPLMpwJdFBijwEIjrFkKjNZI1lmOZ1xt996fnd/waI3tY6axadlV/mjgt1B/4acIrc0/tMA6ykdEcn0/1gE/seFT8xRqxA6g16yzLQbduCThAehmI7wWoEHRXhfVxPcMqBz+nOZmnc0xOX9pVl5D0DFqz7VesHdbBBoH6lYC2XczazkvxweieMcStvZwNldgnAKLjbxmKjBKgXZ13lvFrgr8W6H4EyGlJr3ugtkm5XL+QrcjmnlaTORYnkbkcF0tI6LcDXiP2rNobWNDrL42vM0T3zukJhyieui60DrbR8tnrWkVI74vYx320YhAGwXbEs2y5mU7zsiqSJi9QTRDrXn2bvNBfwL9pAiybwEaCpprz566ZKB3iVu/ii2N+GTHNAWCQuSG0XC6K8dQO87OxARFHaR3gWnpx2XaD/VIamKHkuECU4nyaqV1KBgnagGvAzsu5dpKoB/RMqD8+71hZWXygWl30HvW2RaARoParuCz2lrnnZ4gvm1LVPk2ZlEvNFl+SGKPhCLLakNbXrfA3m2efV5vBZ+3HejlmEU9FtSxbDxQxc8UeDJGfFMVOFM5DldgqnIMNSL8RIGrskx4zQUvm4Ze2YhfvR7Rlm3xmbG8c7Y3USxh/txnKRwK9iUK/szPogWiGb+6UCgcopGXBKm9ddbF1uFeL55Fpg6gy80PmB8K3gG3di/iC+xn7gGZC2E0jfZjra4mu7xF/KNZyPnA7ArQRkv+cGgD0KqgNgmL+gPQ3qnhg0BvBSYa6f1XwzhcgUmx83vY8Lcyy6TXS7BQFUzRSWxb4q+rMPKaYQr7PZFDv5AA904MVz62e8uYOrr1hkTO8HydngRWpDPnwyGSS4JKnLZL/UBfWWebDQqgliX4njWtY8+GRd/C6jNsuLlxAx7a3izqvLxeo4QrCep4vx7m08v/aMy0913HPj+UuP65aLhanS5/PuiytG6MpBx9FdhPgUMShPdzBb7PLyNbnsmOdL3gZlyooXyvwKsKJbOkugFPxBT2AaAu52yFDfvejd33VuMPBVUR+apmTYJWc+og6uUdmg0GvqK0S4I6Q8+bYsPNx0vjgF9Cbp0gV0Xkm827Lf5AgQ2N6kA/4Gt7xmyzqFukoOfsaJMM+aFp75gv9NAE4R0ButXCe3plghciwvvaJjSuVWCKQpRgWGNoocCHCjyTOd+eAm0U+MAip4cW+fEtiGbR5sZ8c8vrnG0GDDQrz4hhxztA+zeCdHqA/lNDFrf8HpY/fqkO5JcEfU/NWs8HiMJcGoJK4EyqwyzCI6ATyxA719mss4Ux4htD3TPyXYCHYz8GEynSaoEi68huoEtBrUxP+oM+qxnaVhPeqqBmGeKFQ6p9eDlOUVXNCFBVbKvAtzG/30MK9MoS6e1p09SzFSjKr7+q2HnTNXky1olvhLqnvusgz0FQ8Qm886kp139Ae5ZAIslZtCmNkBrJwiGqU//klwStyLC5J9FyqbhFXe7tIDcHxlKzXOpHe992BYh6UA1RM90+V6S8F+UJbw3LFH11bcLL2MgvMaQtcL6tTWhMjxHfo5kJWVHgf63SExqS7sUsxlEKLPxiCC8CH1DUdYrjWoOGgL6ODdP+LxpiFEUSu4DeSsyidWjEpljLiCAfWzbfiKI+OQyTFvUU4PCUqVpPI/L8DPcP9r6rE01aPZcg6vUzQhFxwutigcRbrmyEp+F0TVzXwWZxZxh/LLJwl03S/YKX0bE65UvgxBV6Ro4DFfjUnjFfgZED9yhVdmWtalbYd4lwiO0a8Lz4LNr7pbEe641ONvRbkBgKLi0c4mdEPs68RT2GdC9t25naqyNmxf7/FDgwYxQRIzwAXQR6LLOEl2MfBR5awqqLOOJ55WpHFyiwrgKjbemaFFigrblcNGztbqlZ/Rir7PcK9f9lVWBtBcbGTNtXVcX2jVTr1Yz4ZsSssnGgTWPXrBMdte5bo6ZMB4A+jcWljYoUOBXokvCBzSIKx1jbzq9O7cwa70OmHMm9gQnU5Ht7iuwEni+L8FYBvWsz4pkiPFWxvQK9C/TzHS1OT9WjwcR1GkEnBUbrAl63ZMPzBGOUVktdgX/ay9xQz1+Cfgp8Y/fMVo6hGleO8JF4OERySZDuMUtw7dj1Z0WLtXVtzEJ8LhqGpBI9iRISLI75wF6nJrxlHpAj9et2l4oDgJ+SWSQJD6I4OylzhBd42iYxjy3ossoxWIEva/nuqhLbxq7BxoK/2B46EswSXKmiroYpxsuOoLMtEl5m5L2G01WBR2qx/XC6p+ANNgD9j8U7yQjtHps5G1uA8A4AzTIrMQuzaFuZDyyepOBlKHkcpWPZeldpBJcI7VLv2j+0qR/K7m/9+RtdsXRLe6mTFlW19VCwuWCcWXuyrWJHqWETmCV58QNt1uVRBR5Q4EJL7dzcGH6mveR3CgxS6mbR1NUWvK9jhHeerVnsU5vwAJTFrDG/Ae4nim2rdMJJle6dDXopc5YdVCjwvPXrIfW0BjvYJOWP1ZMW3RmtRHSBYDvBP1UznJom+K2ieNRUmLWDFHhBVWyvHH3MzL1VgYExRr9dl2UhxZTuAf0aNND8KqvUJjyHo6j6do316yGZqnXgMOvXUxSWj4gsV94oncN/jNAWmWW3cYL4dopla5qpGl90Kgjvsdjn/RSYonE0U+DuRtm8o/iEVwF6ymbQnPAcpdK3KiO8YRkiu0oFXjff3akNsBI72RYU843U5gquK7Ch2F6KFhQgOM62ovha8Lbg8kbfWXEJwos27nghowpohAcWGzUddKUTnqNE+jbUCO+KzNQ4x7Fm3X2iQIPXWAs62+zswtikxWglVtjYZt5TBAcK2gu2Fvxb0br1Er7wCDZQYHw+UtoIb5r58N6y+LqdMqqAMcID26BmphOeo0T6droR3h8yUdto1PauEd7Aoj4betgOivlJixmCkE9JZ2R3dOKedS1fZ/FD28xR+WuLvZMCj8cI7wWLyelSnlCTkhHeaqDPnfAcJdK3gUZ4t2Witj/hOP2SNxR4t1T9XLCl+fRkQ9e2grXs85oFrn9ecEKxh63dFHg8NgnxoEZEWUySQ9qMK+BWS2aq1SZRucNRdH07wggv9T+oglUEnwqkn3BoI3zfz2QbiQs2M8JrWeC6fwnOLxbRNbcYmjlGdF8q1M5iohxnrDyEV/1WW9rysxu8UzpKqGf7GeE9nAHCO9NIZ5IaObxJ0MaGul0LnHtTUVb0Bn5JlNrlZSO6xQqM1WU10c8ayXrmy3ulvrE4GVLEHWt223I4SqZnu5qePZVysmst+NwIr2+Z6vCS4NJE2Q42y/uThjy4rTowXJeyoDqNcyx5n01LnxbLevB9oZUTytFfgT9nVBF7mCK+5Z3SUUI929b07NWUE95QI7sXy7VwQLCz4HvBtYLDBENsC9nzG/LQ/QWfCKRdeEKBy3VNTZyL+fKeiPnyHsj78mo9J8qo8p3F6hydQUXsbIr4qXdKRwn1rHtNxp3Ukl1bmzyQSroJUr3q0lUwXPA3i9nrs6IPam+xMPnlHK8plkJcY2hhvry5sR2LlpmRWIGTq9faXZa1jbzV0UQxzTtl6jpgn7wzO1a2qoUwtIyVbSA4V3CDYJganhm6FG+zfk3i2NTKOxgnPLWyKFC/GIPPNvO1espZVeyswJtL8+Ut47kVCjxm992aMamsUrPVniNl+jpccFuibB3T37b2eScb/twsGGSL0GcKTknX21y3OuwxAXZ6LKWybi+YbrLdPeuK00XwcMyqm6DYXgCC1QTXaz+eMdJ6T1XL99IaTndLBy+Fsm7kvSISymdRaeE0kznCmyS4JHHNvoI5hWK5yohKojRei0hhanoLB3le8K+sK82+gh9NSb5VYsMcwUGCzwRSBV/oYqoUViwjsXJcYIT3cV2ppFImpfyG0e1T2oZrC3oLetayyKN9hDdPOpdtiNeBjKMuwhN0tP/XLXDvx4KDUvZKs6OqlS4biGANRZskJcs3USIvosmyt2ArQTNBhWCNrCtNB8GXFtG8dqITjY1Zfa82dNmGAs1j4S0Z2pFcn5sYOqWs7VoKbhF8J3jS4pA+Fexm59eztmuTuO/uogVolp/w5tuQNX/MiBHedna+osC9EwWnp+yV8ltLrl1CmR2vaE/jZPlMYUtEC+vVZ4I9sqQczQVnW0O/JrhPREPLZLoV8+V9E1vAW8uX10DS66XAQh3K82rRWCndG1zrd43wNktZm46wtlwrVnaaKWrHJkJ4twkqY8e6McLrHB/eJu6dJDgqZa/0kRHeRmUmvKoCenWq+fDWzIpy3C54RbCPjcdPsV/E/rFrugoeiVl1T4riZyRWVy6KWY3NMyC9l0wkvVLWpp8KDkuUVQjeEAxsKoS3jCFtM+ukByauWd9SEG2Rsld6wwhvqxLKrD6Et4RexX4kTsiCYmxlDdwpUf4rRb8qCFrZ0FZm3R1Xwvq0EXxg3zU0A11rghHeHilq01aWMLFbgXN3CEbGCO8WCzXKHx81BcKzzxearu1oFmBnweOC+1L4Svl9gXcuMeFNTejDGBv6bxPTq+4F7v2r4LIsKMZARXt3UuCXToL29vk3tonGWo1Qpz62Jm6uYLN0S/D4P8DPJ8CR+6aoTVub/LotTTFjhDdQcEzseGElIbxzBFcnytY0f1ObmMU7RPC+zcxOsRxrbVL4So8a4e1TYsJ7V3B04phTD8K7XXB5FhRjqKi9X6SVt7AOsXmZ6nVbLAwmzbvE32mK2D9l7TpZcHCB8lcFJ67sQ9oiyO/AfI61lOAfpmeHlvCd6zOk/UzwiwLXvCI4KQsNe4zglQLlG5qV0LZM9eog+Mo6ZZoFeYsp4kkpa9erLM31arGy/jZTuZYT3jJlN9Jkc3WKqnW76Vkp3Un1IbwrBc8V0KsfUrOfRB0v2U2wIDl0FJynaJ/ScpOxbAJlg5SK8DpTxMEpa9c2Nts+2fx2T5j/9QA774S3dNltbX6rhfGlk2XGn0zPfl1mwmsjuNf06m+mV98mJ3/S3sBXm7P6WAsmvMgYe68U1O1B65i5lIrvMlPEC1PWpi3s7xaWNWKf+BDNXBY7J3OWWZDp+jRxmIUswet5WZYZfzQ9O6+E77yWoEeB8h0L/DAW1KusNG6FOSfvEjxqMzPbpKRuG9qMcVr9eBeZIo5MUXv2tl/gATgaYiHnowV+W+bqHAD8YHp2k7dO01DA1SyY9iWbSbpX0Dt2/gIlzH1Bd1HyLMuDTRFHp0hWT1pHvdQ1p0FyLHe0wNrAHaZfAj6BuhNyOLKveM0ET1ng8w6CjQSnx4fdlvHi8sR92whmlrh6J5ky3pISWe0TW/u8umtPg+VZrmiBfsA3pluziWJSm3mLNA2lOyi/M1GiPOSdrGUkvKNMKf+eElk9ax30fNecosizY3W0QDeObYSv7Ao8ErPqJhDLTuRoGkp3iWB8gfIdLJtLhRHebeZgzR/HNgLhHWSK+WAK5HSwkd3UlAbPZlP/2tJPh/GCAtM1svaO90VEJTCISF8FfGefK7wFmh7hXSe4sUB519jayJstrc9jseO5RiC8PWK/xOWUUYUFFUtwhmtNkeUbuM8y+dxVgsdvBTwfs+rGkYWYNkfJOvN5ggcKlPcWTCvzkHYHU9JJZZZRfyO7T5O5yxxFIbwNFfjB9l8pymoHXUPrfj34LbCAmkmJ/V3aTni9LRXVOonyG/JEWEbC2wWYT5SNdhywcaPLZxzN1IwXjfBOdo0pkZyjvZWlwBQF2jXoWVXsqsA7Cy7h89VaMhMYQ2z1gsNJ73bB27b6Yh9b5D0tHyhZRsIDuDf2Kz0PuB5K5uspZH0M1FC+06aMz0ZKrcxaeZUKPG2k9z8r9IzLaa/AzbbvixR4Y/xR9HLpOpKE18yWvvxd8E+LhO8cOz9AiYXVgk6KyKcx0Nl+pRca8c0iis1bp6RyGUMLBT60odaxriklJ73NbFe+Rapi1+W0EPsqMNmIbr4Co3Sdux8c2cbmNrRdbMQ3ExgFDRsCLaMTnWod6E2F2svEHCUjvWAyf0fj6o6N00jWU+Cu2D7NT2t4ebIQORylwpZGfPmZt2lAoIjBwAq0ilkMh7nIG4nwrmMVBe5XYM86RiUVCgxQYJq10QzlGOw/TI6VGbsAT8SI78v+PTi5GEMZBYZYR3pZHq9VDkuvnQJj7LhBgSEaFe3cpUA3BR6PWXUPaASdXGqOpoLewIQKWPzjRbyrwGTlGLyixKerWFWBr8x356EM5SG89fO+U+U4VoF7FZik39FZgTnVM7o5DndpOZokjtmafRV4NfbL/4Fy/HJ5hznKcZHd/4xLtcyEdw2tY0Pdeapia7P6xuoyX+zvaOodBSpsxu71GPG9bf6eynp0tEoF3jLroo9LNCWEN4JOFm7Sxf10Dkch4srRT4H3Y8T3hnL0q8snp0Ab5TjapdjIbZbjl8pF+5dUE17gFgX+qsBUBa51KTkcy+pEUSzdAAU+ihHfs8pZ6qsoDOI7O95T4I+6wqPyG/nHqYsCD1vbfKvL6Jjw4fXV8MZfZeNwZLlTtVLgrOrJiOi4XYErFPgTgIbTVYGnFNKTcHSlt8IDgxSYae0xXYFBFnJSa0jrcDhWpJNdxarKMVSB75TjN3HCs054mk9WNEI7VLGlAs/VCi0JNft96CI2cMJzOIpnXbRToGUtCy8KR3mo+nNkgVxcwjxtTdXSDgrMM6L7IpkhRTn6KcebCjzpy8McjuJ2wCts/eZ3CnyrwLh8uINyHG2dcq4CYzSytGt3V3pZw+46jxdNposUuC7uL1VgIwX+L2b1nV6gvdZWYLSuythuXg5HigjvT0s5t5kC42PZN35QIJeP+HfUm+jWsAw8i7QeTynwXwX2iMk56cv7Lu/LK9Amj9o117hkHY4iEl7smp4KjIsR3zQblvlGPnWT3WGCKZZPcK7gUgVaxmS7lQLPx6y6cQpLz0hsgcfzLaPKzi5hh6OBhGe+vd9pRE2KLCvfRYEnYp3zS+UYrDPcz1SA6NYVjDOik+AZwRYxWS7pywscUs82u9LumaQxqdjI2+HIDOHtoRz7JspOj+VVGxOfPbTzvRWYoIB0Gh/bfh+DPf179f4fAyyBrGwjqKGKbYMo6KMtq1M6LVTgWoXau+Yt8zuuoXUsoPxC12KHo35k93cFrtTltK9VPoLORnQLlzVpocBBWp87Y1bMh4JfqonucSroIJgYk8d9gp/Ezre37NmLBQs0gH+qip+u8A9V5GKY6/nvHI66OkwVO1iH+XFpPiMNZ3MFxtqMouzaUfE9F8yi6St4LdbR3zYrp0mt+RRU2qbuXwoGJM71FUw2+cwXjGqoRazAn61dJnoKL4dj2Z0lP9s3oh7kuK0CD8Z8d9OU4wLtUTMMs87eT/DfGPG9YWUrXWcU9BBcK7hb8GdFewgj6CJqLGbBeoLxMZk8LYpjkSnQQYEv9VtmaAuOc612OAoT2K6xpUwdlqOD7VRNlCfytuBr80+1jnXwFoJfxawZCZ5cmaw9wV6CHwQjBAcITrMNykckLN+4L+9783MWVQ46ikNVwZeC6aK2r9XhcETENdEWpl+0gvfvqTW5I0ZokwWDRM2MoaCllU0RXGdlrQR7mtW3S1Z9fTZkPydRto1ggaCLfb45Jp9/lJKMBPfa94x37XY44p0jx/5m3X3T0Kwogr0FL8U69idGcvEZyVUF7QS9jBifFYwVvCV4XbBhxsiunb3regXOvSEsvRP8VPBF0pdXojqtbxakkrvrORxNl+yiLBz5INchRXtmHZMWNsz9RNRYlLY15ljBYxmTYU+bZW1W4NwjgnNjn1dpxHqdbrKfEvchOhxNl/CGcaiR3efFzsJhBDbAQlPyxDfBzu1iFkjLxD2d7brMpCoXrGl1XqvAuVdFeSYPYjPEEsteOeNwNAXrrlIVvKDuPKkhnFLC72lhxPeRoq0jsdi8V5Zy/SyxYrFoZZTlZMHxBch7Xnw1RRnqtalgjlmge7rWO5oy4R0b87O1bITvayVoY/8fJXhzKVbJXME2GZPl8TZDfaSFnewieFFwewrqdqm18yuu9Y6mSnbNBO9aRxhYhu/fziy51RPlPQULRfZSyltSgCfMkn1ZcEF8lrqM9Wop+JNgI9d8R1MlvFOM7N4TNC/D91eYf+uPeWe/zd7+S3CHt1DJ5L6b4CabTPmzYJ/Yue0FlxW45zrBZi49R1aVvqVZIRIcWcZ6dLVh32cWiPy14H5Rs0zNUfRh93TBWYI9BGdYEPSZdv5QwaQC930u2N0l6Miq4p9pZDcpDasdBN0EO8cX1TuKLuNVjNwOT5Tva66FNZzwHCuj4rc2BZagr0ukybT7ljZjXFng3DRBbyO8twQdE8cUJzxHVhV/iJHdcy6NJtXu+wm+WMq5t2zW/FDL2vJx4ljohOfIquK3FVwk6OPSaFLtvo2F+1QUOPeNTWb4kNaRWgU+RtRO/23rJ69NlG0v+L2lFh8tfM+DJqovbQQzBT9PlO9sRNjBCc+RZgW+UXBFomxLwezY5/6WsmiY4BeCC+3zSS7BJqkz59mKkEMFGwoOtNn64XbeCc+RTcKz0JOvBUcnrvmFYIao/34JjpVKb44TPCb4wEKBTsoPc23i4qYC99wp2Mql5yg34V1lxJY/to0RXk9zQDdL3Fdhi/Z9aOtwODJFeLMF38aO6THC218weSn3vl3OgGOHw+Eo9pB2O8uSsbRZOffJOByOlYbw2loE/e6Ja3pZAGpHl6LD4VgpCM8+B3NO72kR87sK3hFc5RJ0OBxZIrwLBWckyjYWPB37XGG7Z71oO2i9bAvHK12CDkfp8f8zbZdhPgOyzAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxODowMjo1MiswMDowMDi81y4AAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTg6MDI6NTIrMDA6MDBJ4W+SAAAC2XpUWHRNT0wgcmRraXQgMjAyMy4wOS4zAABIiX1VW24bMQz89yl0AQt8S/pM4qAoithBm/YO+e/90eHa0TqIUNkidukRNXz6UHL9PP14/1vmktPhUAr95zvGKH+UiA4vJR/K4/O37+fy9Pbw+KF5uvw+v/0qKkUZZ/D5jH14u7x8aLhcSq/EHtbKkarwINNClba1H5XyWqJG1xDBz9Yo2gqnMNiqNlXthWsnCTD+ijPgvI6hgyIv7sHqK4NengBUZx8BgxykfWUwyrlYpd6lJUEciLbCNdizCodHs3KEQYsG378COzyW2oeGjQQOd/O+AA64wjWUVLwcpbYwjhWQCUitjUSDylER7d66rJCZF4E3hgBleGII6yo8LPAHd3qIZXzIWIetgAogVxsytgyKSvQl0BBJykD3kXEB3PL3r8BMTUaQxCSRzBpjiYxESjU125LcSY18hWy4HJFBdrDScyLXNbSnUa8kA+YAgDuGwC2QA6k8RpWhLJtRBuNlWUqm6NiqoyGcEzpUiVdOCV+hTNy1ZWmilmXFFPG+JFNLgi1Dpr0hXytoZin9l0EtEuqEZlp5hfOvGVQZjZzyiQfiuyplsLpsvoQjVwntXTlWlSeRUJQzoYXt1pkmSwItoVJHjxaRrF3c2tJq5gpqVPFwlKsJddy0AG6pYlTn6DlNUFPktrpd6Xq7N+4eQHZC9FfeK1+9dydGzVo1E48lUq7Oo0d866bWOubIAvl8Pn2ao9fJ+ng5n/bJKrn3+ZkK3cdkvto+DfPV95nH2LGPNsZu+wRj7L7PKcEe+zRivPL90NkUfDdb0hxPapzcUkx2nPRSTIKcDFNMjpwkU0yanDxTTKacVFNMsmha3sTki+aUTdz3IG+aSVn4ptnDKVfLMjnLFlJFW9w1iGxicpbknJrJWeKmmZylXT2VyVmSM4RMzpKcIfS+GnnTTM7KN83knDVzXyH5/vG/jefDP+LCfqpxTwMGAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAFxelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRdVJJTgRBDPsKx0GqibIvGs2JO/AgHo/TcOCC1C2l3LHjuPrj+Xn7eMXz9n572/fz9rzOQP6U/315+brdlaKk8xg1s+Z53IXUpg2ICIcDYYpgkThO7hp1NY1OxBGq6tDzYOJRGZRKrgw+IEnuqcNoVggJOViKs5pmA1GqSF0ZdrE5Dyfu1qVYSBaQuCp0QGw7krItV8SLszCniSUyDnzCATugIiszB6sZahCZsZFt6RQL20kgwRxWEc+KNdNjq4PlIjzXcBqbHaRU6QIho2K1PHfDrK5eFrePr3QiAXRvOsIKH0hALGEaAm7uAaTZnDENChgPBRCZw9hn0w9inUYf8nERIEk6JrZ9oq6zcoUbSb9WHjOWCxKW3pURJOsl5dDQ3ce6Un9m6nAvFGwbHpzpFAyhkDGP674nAwss1m3y81ckl9lvgq5yUaezasMIDa/z+vUNWUCEd2v0cu8AAAAASUVORK5CYII=) |
関連化合物
ヒル方式による化学式 C9H28N3O15P5
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |