モル質量 of C16H10N2O6S4 (DIDS) is 454.5204 g/mol
C16H10N2O6S4 の重量とモルの間で変換します
の元素組成 C16H10N2O6S4
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 16 | 42.2800 | 水素 | H | 1.00794 | 10 | 2.2176 | 窒素 | N | 14.0067 | 2 | 6.1633 | 酸素 | O | 15.9994 | 6 | 21.1204 | 硫黄 | S | 32.065 | 4 | 28.2188 |
モル質量を段階的に計算する |
---|
まず、C16H10N2O6S4 内の各原子の数を計算します。
C: 16, H: 10, N: 2, O: 6, S: 4
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994, S: 32.065
次に、原子数と原子量の積の合計を計算します。
モル質量 (C16H10N2O6S4) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(S) * Weight(S) =
16 * 12.0107 + 10 * 1.00794 + 2 * 14.0067 + 6 * 15.9994 + 4 * 32.065 =
454.5204 g/mol
|
化学構造 |
---|
![C16H10N2O6S4 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAACSCAYAAADYZHYsAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgAcnGs4ugAAAAZiS0dEAP8A/wD/oL2nkwAAHt5JREFUeNrtnXmcFNXV97/si4AoooK4AS5oVAwxjwuCItFoRKOGBBPFRCNGzRM0JvK4RR6jxteYNy4xEc1r3GOIWQxGjUsmKpKZqVMzMDhuhAjihltEFEWE8/5Rp+g7RQ8zMD093c35fj79gaqu7rl96/av7z33LOCUPAq7KlyqcIfC5Qojg+e+o7Bf5vp1zjmO45SD2O2h8KbC+QpjFM624yPs+b8ofCPzmvuz5xzHccpB8P6gcH7m3GSF2AXPcZxKE7xXFPbOnBuosEqhqwneNQoTgke1C57jOOUoeMsVhmbO9VBQhc1N8P6mcH3w+LcLnuM45Sh48xXGZ87tofC2L2kdx6k0wTtf4WGF7nbcWeFOhZtd8BzHqTTB66kwU2GBwm8VnlF4RKG/C57jOJUqfAMU9lfYNnN+kEKfzLlts+ccx3HKRex2U1iicJf3huM4lS54R9uu7MPeG47jVLrgfc8E75feG47jVLrg/dwE74feG47jVLrg3W+Cd4L3huM4lS54z5jgjfTecBynksWuk8KHaSiZ94jjOJUseINM7N7y3nAcp6JZdhD7r+7JC9qVf3hvOI5T0UQRJ4ugccxvvTccx6lo4phLRdAo4grvDcdxKhoRbjfBO817w3GcShe8p0RQEQ713nAcp9IF71URtK6OHb03HMcpGgrdLNvwzgqd2vvvVVXRU4Q1InwycyZd/A44jlMssTtD4XWFBxX+obBY4aD2/Jt1dexhy9kX/Q44jlMssdtd4W2FYcG5iQpvKPRWOEjhHiuSfarCIQo7KHRuy9+NYyaY4HlaKMdxiiZ40/OlZrIY18MUplo0RPaxUuEFhYcUfrH4R5whwpfjmL0bG1vOSFxby54iXOk7tI7jFFPwbsuXmsmymJymMMyKY09XuENhtsJrWQF88ZfMtxlb+lgqwj9FuFuEH8cx3xJhNIAIO4gwLYq4Ioo4sbExKeLjOI7T3oL3c4XL85x/UuG49byul8KeCsconDNvFleL8IAIz4rwUUb80sdLIgwyMbw4jvmGCD9bsIAeImwlwl7z5rGZ3xXHcdpL8E5RqM2cG2hFsndSuEbhCpvtHdoa+50qnebOZbs45mARThHhf6OIO0W4XoSJIvwz+5oo4tRAGN8VQUSYKcJVccyUKGJ8FDHUd3Qdx2mL4PVQiGxpO1bhSIVqhestfdOKFux3N348mLPjmOPq6thn9mz6ru/vibCXCB9GERdVV7NNIHiTRXhOhI+bmR2qCPrJVtQoLFR4VGGGwjTbZBmlrP9vO47joNBH4RyF2xVuUphkYtdV4WSFS+25vPa7lYOpzgjTmyJUi3BPar+rrWVsfX1Sb7aujgOiiHtFWCbCjeGsTZVO1dUMqatjTBzzTREuE+GuKGKOCEvXdGNxM5so6eN1hVn2uUYoPKDwksIihVkKu/kddxxnQwQytd9NUJj6zpFcIsIsERrXY7/TOOar4fvMm8fWIiyOIo6NY4a3ZnfXZqRDFcYrTFG4yop5i8IHJnrVCn0VXlE4U6GzPaZaSUi3E7Yf+wI3Amd4VzibBHV1DBZhdGi/i2OerqtjH9WmURwiPBVFTLJZYZvsdyZq29vMbpLC03muqVGY6Hep4IwGZgKrk25GgSeB3t41ziaLCKfEMU+LcK3t6s6vq2NgC7u7KoIuuJoahecU/qpwg8K5Cscq7KWZL5bCJQq/yiN4MxQu8jtREPoD5wDPByK3Cng3EL56Aqd2x9nkqKlh1yjimCjiEBG6hc81NLBFHDPKdnOnRREz4phHRVj4+jd5ohX2u6dt8+UChZvzCN6tCuf7XWgTo4AZwAeB0L0GXAVsb9fsDjTac8uAr5SwkaYn6CjQwB9U+4MO91vtFGKWd3cU8VB9Pbts0LDcm81sNnesze5usNnecwofB8J3qMJxCnUZseuk0KAwwe/CBtODxBTwaCByCsy2893yvKavLXMVWANc18x1HS14I2zoXBycOx50lt92pxCC95otU3co2JDN2e/GKvRT6GmuMz9S2Mwelyk0Kh7ZsQEMt5nbW4HIvWczvD0z144B7gS2zJyfAnxir30CGFSCgrcEdDHoMBc8p2DMmUMvSwu1sr2diBWGmH/hsyZ0tyoM9rvQIp2B8STuPWsCoRMTr96ZWdwUYF5w3Tl53nM08Ko9vxQ4rMQE7znQ74D+zQXPKRiWNEBFeMF7o+TYFpgGLArE6yNblmbThe1uS9TlwbWv22ywuYSuA4FHyG1uTKcIuRc3QPC6gMagk1zwnIKQpoWKIh7y3igZRgF3BMtOBV408RsQXNed/HY8ASbTOvtcFxO6dBf3fpLd3o4QuoNAz8gJHoB+DvRl0JNzgqddQH8CurUPFWeDEGGqzfBu9N7oUPrZUnR+IFyf2jJ2fGbmtZ2J1JvBtctI7Hh7beTfP5rEfSUV172LJHJ9QaeA1ttGxQrQA3KCB6AzQOcGgnehXftKIpKO03rBu84E7zzvjQ5hIlAFfBiI1yvApTS1b6Z2vJkmhOm1sQllIaJVdgBqgqXzt9tR6D4DeiPossCT6Q3QK/II3pagbwaCNxD0MXvNKtBpoJ18KDmtEbxZFmZ2nPdG0RmXEa98LiXb2FL238F1H5vwjW+HNvUksQWmf+sOoFeBRK476ETQR0HXBEInNsuzv6Nbg2Z+gPUI0B+C2k60dgWdDrra3uPPia+e46xf8BqtUtk+3htF5w8mKsuB/8o8lzoTrwjEZ4GJ31ZFaNvkYNZZBwzd+LcavYPN3N4IRG4Z6C9yAtaiWPY0YVwBempwfgLou/aeL4Du5cPKyT+ElE4ifCiCVlfTz3uk6NxognJlcC6fHe9PwOEUfwd1pIlsaiM8fgNeGy7BV8GKBSZKz4FOBe2zgaO1F+htgWDeCNrDnhtuNj4F/QDO+YoPLWcd5s5luzR9lPdGhzDLxCQ0J/ye1rmUFIt+QZvS6Iyu67l+oM1CFzZdgk//KeiBBfiZngz6oYlbDLpzMAO8BW6rJdlxLuBS3KkIdtyRA8eNo+6007jTe6NDSGNb98ksZZsLDesoOgFTybnJ/IPER7ClJfgrJLvJAwu8NtkXdKGJ3tugR+ae630qyYaLkmQO96LyzlpOsYFxt3dFh4hIaiMrF3PCGJKkBKmYHUpi66sPRG41iV/gRGjPyB3dItm1VU02Lpb/iFypg32Bf1l73gaO9OHmYL++CvzYu6LoDLa+LzdzwiCSvHpK0+wsS0lskTsVrynayeyBq2C/J4G/w9oyBf2A+4Kl+FXtK8BOOXCnDYhveVcUnYOt7/9Zhm3vClSb4L0InEiHJoC4bYwJrgIvk9vx7gRcQM715xGKs8PtlChP20AY613h5oQW2JOmYW3pRsaJJdK+7Uj8GNO44GnBc2NtKb4o8xmcTYzXbYBs713h5oQWSMPO0vjV2I7/q8RmnleRyyhzD6ytyzKYJOyuM0n+xUuB/wX3P91U6G0D42NaqGvrbPLmhP7kHKRT/mPnBpZge48lyRGoJOnuPxMscf9oYn0G8H2b9Q314Vj5fCYYEI6bE9bH56yt8+x4Szt+v4TbvBvwjLXzJjt3OImtL4w79uSzmwjH2GB40LvCzQkt8FVr6x8zAji3xNu9GXAFuQSp00gckp1NkHNt0N7gXeHmhBb4Hxsr1zQjgOXCNcDPW7jGzTsVyGbA4zZop3t3uDmhBWZYe8+24wvs+Kdl1u9TSRI2rG/VE1FUX0KnPdmVZBfrHRuwb9j/v+BdU1SOLTNzwmPW3jRi4WY7PqvM+n1vktC3XZqZ2c21z/UWib3PKUO62RKkiqYFYGpI0v6EfkueRNHNCflIc/HtmhHAL5Zh359vgnYbSWH4Z8mltN/SfoTC6Axf4pYJg03EXg5EbrktT0baNZ3smrSewSxgizL8rCPLrL3XW39/vwza2tV+EFeT1MLNJ4DlxrY2gzuCxK/wSpKNmPA7kUZnPE7O99ApMTrRJAfZWqF73m5ic2J2VLDMXQx8vow+89ll+Gv8gPX1l8ugrcOCcdGcAJYzJ5DLIn1GcP4QEpNPGq62v8tL6bA5SeLIxkDkVpJLA55vqdoXuIwkpTck7hHV5OoZTC2Tzx7+Gj9MecRKPmftLYfsvF+wtlbZ8XA7XlQh3500OiP93txFzk9ve5JYZ+3cmRV33ukx5x1NmoMsLADzqt3AIS289nZyRWBST/MerFvPoHcJfu6jSQpJh7/GqV/bEuCAEp+Fp/na+pTBGDvD2vr/7PhwO/57hX2XTiRX0/c5YI9QEK+8kipLlnv3vHkFKZjktJKeJLnGniZ/DrKurXyfESQG2zR99wnBcyeRS/1Tb7/qHU0P+3x1wed+Lvg13i7ok2zweCkxhNwOeTnwf6y9F9nxd+z41xX43dqNXHr990k2+wCIY74mwnITvflRxG4uRe1L1qVESeIZr2PjYwH7sm767jTT7u7BEnkZ0FF1AoYBV5MkcgwFPt1xnm8DNVyepM/dXYKzqDHWtjllMu6yWVGyAlhp9AHuTb8TO+7I5SLJdyKK2E2E+SZ678cxX3NZKixdSDI7PEpTlxIhsdkVYrmZL333oEAQZzYjiO1JSzVY+9hyPvw1Dgffl2kaPL5nCd3Tbwa2onIgmxXlPkorLVR7MaVrVz6oqqJBhKfq6pIawY2N9BHhHhM9jSJmNDZ6PG5b2QV4gtwuUepSchPtl87mYHLpu18FworuUwJBfCIQxEKT1mB9idbVYO1DkgIovXYGuWDwXYGGoO9K5df4MmvTZWUyFrNZUVKTwucr/Ut4zTXsJ8ISE7c3RDg0WOJOEWGl1XSuravz2hlt4UXWdSnZsgh/d6DNJvM5I482IUzTeR9WwL+bbr58xMbVYJ1CsiudLdzSC7i1GUHsKO6ytnwzOLcXcHIJjsN8WVFSAdwkMgeLsJUID5vofRpFTFdN3J/imFEivCTC8jhmRHNv8D0RFoiwWITZNTWegTRD/+ALemYHLaOnk3NG/jM5T/SBJGmyU0GczsZHZ/QzoZrHupsvEzbifUcFM8NsaFAoiB0dKznH2jEmEOUX7NyvKC3ftv1omhVlAKWfFqrgWP3maSKsNuGb1dCQ+LSKsFUUcUgcc7QIj4vQIMLM6mq2IY7ZW4TX0/WwCMNUPZwpwx6Uhp/TBHJZbl8kiUPMJ4j3B4LYGkaQ2AKXB0JXqBqsA4CHyBWwnk7OGXkUuQiBjoiVTDed3rdl+knBc5PJuRaFbkIdzdesTX/ICGD9pvjFjCKOEuEdE73FUZQs62tr2V6Ed6KIg+bMYUsRDm1spHv6giUiJenbVSocTc6JFpIwmLNIbGzFZkdbIqbOyKdl2plPEPORupQ8GohcuvkymcJuhGTD5R4IzAGhIBYjOiOMY9bMYzVJivH0748kV1rwPZoW5+4osllRsgK4yVFfz05RRGQbFo/Z0nacCK9VVWVcwkToHUU8IcKiOObSuXPZzvVtHb5ng+qXwUxL7YvaEfQklx0jdUZOK7rvQJKEIBXEb2deO8xE5c3g9ctIbGntHWUwjlwlq8U0rWQVRmf8lcLbR/PFMb9vn3tfkl3xNPSvlEsLZrOilGtaqIKyYAE9RPhpql/z5rGZLWXjOOb02bPpm10Pj44ibhVhaU0NO5tKjhDhd3PmFMU4X8pca4PqB3Y81Y5v7OB2Nbfs6knT6Iw7gS/RvEtJMb3U14YG2TIyDJc7lKaxkm0tRrOhccxjyR8dknUTqrJZfkeQzYpyCx1nWy5pqqroGcd8LYp4SITF1dV5Ip2iiIfiOEkqaDM/FeGlOGbUJtx3f7FBdXwzAtiRhMuud2ha0f1Uklxj4bLtI5I0PB1Z2apHHkFORXcIuU2ErCC2lo2JY05ZX2nBMeTchF4BDuyAvhtmP17pxmKaNPYIl7jmEeGvIpxHfT07pWImwiAR/i2SGI+rqxkSRcwx0ftYpGyC1wtNWngkTXk0KyOAHc36ll1HBcu38yitGqBfJxcu9yysdSPoDvwiEKvf0Lod4rbEMYdko0P+aCIKSVqixymdcLl0RrwrzlrmzGHLdCO2qoqeUUQUx5xEFPF5Ef5mQve8CNOiiEn19UkG0qoquopwVeDFfOcmFqjbKfgC9bNz6cxhnxJrZ7rsqiHnSnEYOefkUmT34AflfZKNlJQ0ePzS9by+py3tw3jejYljzsex5HzcwtKCWUH8UyCIxZwl/yz4zH1w1lJby4EiPGPudq9HEbeus4FhF+5n3srvxXFuV0qErweBus/W1a3NXFDpDCLnNtGcAJYSh5JsXKScHsySSpW+BLGSNA2XG0b+Xdv2iGOmmb8TRodMaoUgtifbkbj2hJtONS5x+WlspHvqlJyX2bPpG0Xca8K2RoTr0kDd2lr2FOE5e27Zf/83X9oE+uygzKAabMdvlkn7f2LtvaQM2ho6Iz9pfR1SjDjmfPQiScWULzpkF3KO2stpn3jW9HM/SM61J3U+vq3EzBTlSRiXJsKTYaBuFHHvgw9S27kzq+3md6vgrphsg+seOx5tx9Vl0v7fWXu/USbt3Y/EwTv9UTnJZnlZl5KPSNxxRhZ5LKSbQGF0SE+S1EyFDpfb0Dhmp43r4P1EWGSi92YU5Tp5iy04m9w2fb5f40phun3Gy5sRwFInsvYeUEZ9vjU594vs4xmSFPIdZU74LE2jQ45oRhCFjQ+Xa2scs7OxzJvH1lHEYyZ6q+bM4Qfkdsw+F/z6vElllhZMsxCf1owAljqpjWubMuv3LuR2Q9MUWS25lBSLATRfSSsUxLdpvbtIXwobx+xsLDNn0iWKmC7C6jPP5EkSv7TUaXMrkpCrfLGSlcBT9tnSNDR32PGpZdD2NOnBB2X8hdnWlrSlxvoqaYWCeF0L79OeccxOW7j6ag4nF6v5LyqvtGA+UkfTdPClTqmHlEHbR1lbG3z0thvZ6JC0klZnkrC+fLa87hQvjtlpIzvQtJLW6cFzaWnBNTT1+C9XetlnWUnOkTcVwB3KoP0TyfmJOe1Ha6ND8rmUFCuO2WkD66uktRNJURFIAsDHk9ReKMdNjT3t872wHgEsZaZZ+3/mQ7bdaa60YEup8b3aVhmRraQV2lqOt+Xv3fYL9grlF++XzYqSFcBS5yZr73d9qBaNsLTgy6zrSnMbHRvH7LSRvcmlP2+0X7S+NlX/Umba37PMPls2K8oxdvxgmbQ/tREd6cO0qOxGYuNOzR/uUlJhbG5T9jQh5sEkW/PlTrpsT7OinGPHvyiT9i+09nq9zuJzifX9fbhLScUzicSdo9xJs6IclxHA88qg7V1JHMNXU1o1GTYV3JywCTGOpAJ9cwwgyYG2bYl/jmxWlKwAljJDydmRnI4zJxzlXVH5DCAx0DYX53gbuVxlB5foZ8iXFeVZO967DO7BeHIRCo6bE5x25vsk9QsuIHGmvJnc7lQhSwu2F9msKJ3IxUn2LYP+P8PaeqsPxQ41J/T07th0GAWca4J2gs06UgfLtpYWbG+yWVEGkrgblEtaqNQn7GIfhm5OcIrPEJLsEh/StKL7hpQWLCankD8rSrmEzM209n/dh56bE5zis77SgsPIpeheDo9N6sB2bkHif7eUJEbyGYqfvrsQiPXn/j70is4UNyc4KS2UFvxKFaiC3gHaq8hL2LtJYiFTUU6jSJ4nibIoJ9JZ80Afch1mTrjEu8KB9VZ0//RU0BUmegK6czu2I81BNpf8BWB2J5efbAXlkRIKkhjmNOW44+YEpwToT67e62oYeBGoBeTrSNAFJnrLQAtdDnF3+xV+NxC6N+zcTnmW4rc0sxQvBQaQRIKMC859jlzNA6fI7L8/dw0YgAwZ4jGzTlPS0oIr4KEG0CpQc0bWfqC/N9FbA3odaBtK7ml30BPhurAYS1q+cBIt1yAI03fHwM4d3HfZGqwPBc99lVw9VafIiPCuCDpv3tqEoI4TcsvBoG+YuC0BtfoL2gl0Gugqe+4x0A3cQNDt7D2WJO+x6lXo8q6JxYbuCO9LzqH0bYoflL8ZSf7BbA3Wv9I0UcMN9tyvfGwVl/p6+ls5BDcnOOsVpq1BHzdhW5WI1NrnxoC+Zs+3Ig+ddgY9CnQW6Gp7TwWtBz0DzmpL0eJ+wB9oWs+gvXPjtbYGayeb3aUbL7/zcVVc4phRJnjzvDecloSqK+hVtoRV0D/lZnQ6CPTHoBdlXnNDMosD0P6gU0EXBiL3MehM0EKWtUuX4qtMWP5O4YvktFSDtVdGhKcA84PrVlLcEoZOInhfNcFzc4LTauE7BvQ/JlgvgFp0hs4C/SiZ8a29diHoWNC7TNxSoVsIej5oe+YgG0tScEWBJRSmFOIg1q3ButyW4FkBS+14HwTXvgbca885RUaE/zHBu8Z7w9kQ0dsVtMHE6+xA8K4BbUw2IdYK3ijbzV0N+ijoxNYtfQvCduQK+6wysdqYGWOaBnxVIF7P2/uF0R09WLcAzBpyrjRdfex0HFHEDBE0jjnbe8PZUNHrDfqd4HgW6ARbol4QCN4ImxV2VFm7tJ5BuvS8B2iNnXBzW4o2ZpaiaWX5MKHCcPsbbwXXvmczvD18rJSM4D1mgvdF7w2nrQKYCt4Q0KWgO+UEryQ41kQonZ19ppnr9iFJkRVWll8EXEhTW2BaAGYW+e14vX1MlNyS9t8iaE0Nu3pvOAUSPAD9oc30SknwINlRbSBne8sXF3w660Z1hEvRbW0pu4imBWBmAgf6OGjFSIEdFO5QeNYed2g7l9asqqKrCKtEWL1ggWeZdgoreN1A59smxogSa2gvIHRwnkFTx+bNgCto6lICyUbDHSS51NLXvmjiN8Dvf6vFrpfCvxQuVuhtjx/ZuV4KAxUmK4zWZJOoULO7YbZhsdjvglNgwQPQ0ebCMqJEGxxGZ0SsG7YG+V1KPrVlbNaO57RO8I7XJBome75O4QSFL2iwna+wQuEZhb8oXKvwPYWj3z6B3auqWp/As66OfUSoi2Pu97vgFGIo90lmdk3O9S/ijuzG8FmSCm5KsuFwdHA+n0vJVcD2fq/bJHgXatK32fMzFC5S2E/hHoUahbcy4rf28doUnrIZ27siiAgzRbgqjpkSRYyPIoaq0jl9//p6dhFhdG1tyddqcZx2ZQBJrGvqQrKSpi4lj5BkjHGXksIJ3s15zt+sycZQ9nw/hZE2M/yBwi8VHl5wLQ+LsNJEr7nHBy+9RE8R7hFhnv3bEEVey8LZtOlEUqktFbqPbYa3p3dNwQXvBE1MCNnzkT13iNnvBrfm/Roa2MJCxiaKMC2KmBHHPCrCQhFeFWEvEZaK0C2zxD2gtbNDx6lUxpKEpW3pXdFugtdbYZHCVIUu9jhH4SXbtIiDpetHCo0KsxSus9dMWNmHPefMaTkN2Jw59IoidrPd2UPD50T4ekuzQxEa/jOO6xX+r8J3FY5S2F29lrDjOBsgesMVHlBYakL3Z02ct1G4SaFa4c3m7Hdruif+dK2doYlwlgiv2XJ2citnhyqCfrINNXnasFrhZYV/KNxqO87dFDornGz2yNsVztXyqKLnOE4JCGNfhX0UjlM4T+FGhYc+HsKsVtjvVoQhZDNn0iWKOEqE1+O45WLtlkrqsysH82WF802IH1FYqLAqI4DLrb2/Vpit8EWFsQq/UahXLwfpOE5baWGGtiaKmlTgS2d7N8cxl4rwexGeFOE2EX4Ux5xUW8uBrdnFVeiqMFRhvMIUW5LvqrBMM5XzbLf5W363HMdpN6qr6SdC79paRsYxl0cRR8YxJ4mwNIo4SIQl65kdfijC/IZZ3K3w89bY7xQmKjye5/zlCtf6HXEcp92pqWFAHHO2ZUq5Po45GKCujh3jmHEifFuEK6OIe+OYWhHeToXvxeuYl8d+t0ZhicITtmS9ROGzCqdqUgcmK3jTFH7jd8JxnKIQRZwowtT6+rzRNORZ9m4eRey7+CImZOx3/1L4JI8InqUwTpPMOlnB+7XCxX4XHMcpCiI8bmmhjmjre5n9bmeFwxROV/iJbaz0UnhNk2QT6bW7KbyjHV9UynGcTUjwXhJB6+vZpT3/jsL+5mbzhMLDJoCn+B1wHKdYYtdNhE+LmRbKZoAj1MMRHccpJnHMcNuEWOS94ThOpc/wDjfB+7v3huM4lS54Z5rg3eK94ThORRNFXG07tBd6bziOU9HEMfeJoFGUt36J4zhO5fDJNlS9dwANb0304ueO41Q4Cu9ZNIQXWnIcp6LFbisTu2XeG47jVLrgfd4Er857w3GcShe8SSZ493lvOI5T6YJ3oQne1d4bjuNUuuDdYoJ3pveG4ziVLniPm+Ad4b3hOE6lC969lp14uPeG4ziVLHaDFQ5Q2CpzfrjCZi2dcxzHKQeh20rhSYUGhd8qvKjwR4Xe9nysScH18DXrnHMcxykHwbvL6kh0suPuln34Jy54juNUmuC9pzRN5W71J55xwXMcp5LErr/tynbPnB+q8EEgbq9b7Yn0sdIFz3GcchO8LiZeAzPnRylJinef4TmOU0miFylMzpy7ROEeFzzHcSpN8A5TWKrwXYUxFl62NLXrueA5jlNpore3wmUKtytcHBbCVjhXYWjm+nXOOcXn/wNteJv40Sm5kgAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxODowMDoyOCswMDowMJL8UUQAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTg6MDA6MjgrMDA6MDDjoen4AAACS3pUWHRNT0wgcmRraXQgMjAyMy4wOS4zAAA4jX2V3Y4bIQyF7/MUfgEQNjY/F73YJLurqtoZqU37Dr3v+6v2JAFWi2CCNUM+IMM5dk5g7ef1x99/0BpdTyeAsPjUWuFPDCGcPsBu4Pz6/n2Dy+3l/By57L+32y+gAlR1jl6f2Zfb/vEcQdiBfM5YJYOLeieMAsGHo/WpBLqirzmkKODIUylJh7+CUVdkz5IZq4FccgxlArKCqF/HImhgKLVKnIACF4geU40YwQVfAhZOEzApiL4WDKIv7hFjCjMuKxe8VEbKtqD+2EwzsCjoGrkAq4Fta7fYG4Oh7XUWb4NoJHuRRMwKUAyCPCPpTqp2lch+COmcPFNHtzy2l6St2LFjxqyTJigbakDNMduqKYRYp6sKbOCSR8YibGihnMJ0VRPJZR9jQLWFHlVFQpmumtVzrnjBEtN9LZ01cwgWI5s9F+5UT+5GPhy/Mnwwsjl5YWSyJHLNygsnkwnVTnRxoBQPzz9UWohEJlJTfiE8yQE+zOQWblKDb9C0XEhJlkdNyYWQZPI0Hd1CyNft+qk83QvWed+uvWDZRb0s2RV78bFH7iVGUZBeSFh76uUCtedeFUi7pvzb+zfqFQC1157nrB3HbGYLiEPWsgWkITvZAsYhCdkC8pBreDAypJQ9ar4MmUMWMA8JgsfuZUgEPEIdDE82QqOx7yM4GJj1JIgGn7IFioMh2QLx4Dy2QDJYDI+RNFiJjpAHz9ARymAOW6SrRHbIeiB1NMVoAXt+/t/p/ek/FNpZtL3F6JAAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAR56VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAKJFNkDGOxDAIRa+yZSIFZMAGW1Gq9JtijpBrzOEXMsKzhSX84cOD63gtx7Uu13rTvZzHefO9fCR/rt7L73EeLw/Y3/zRz3upWJtV3oCxdhPadsZhRSUU7t2DnTwlvYVS+hgtasxo6AbiQavuEiQdboeCvVCvGrbRqehWkEjUg71gG5XYosrHGrsGU/ynpRW+XsgJ3wGQqJMUcp25DST8ZIeEn+zuak25emuW0qg+kueG34WQPWcuKVKlOANhZ4v5hiKFnqUHMUXzjo26xNKleJIfKsGmqhYHJCPjB4JsWI1m6pUjbvpRppCuaUqmiZRECZQ8EydpIHGaRJvPtjDXXd9/wmF2RykMMKMAAAAASUVORK5CYII=) |
関連化合物
ヒル方式による化学式 C16H10N2O6S4
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |