モル質量 of C28H30F2N2O (GBR-13069) is 448.5474 g/mol
C28H30F2N2O の重量とモルの間で変換します
の元素組成 C28H30F2N2O
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 28 | 74.9753 | 水素 | H | 1.00794 | 30 | 6.7414 | フッ素 | F | 18.9984032 | 2 | 8.4711 | 窒素 | N | 14.0067 | 2 | 6.2454 | 酸素 | O | 15.9994 | 1 | 3.5669 |
モル質量を段階的に計算する |
---|
まず、C28H30F2N2O 内の各原子の数を計算します。
C: 28, H: 30, F: 2, N: 2, O: 1
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, F: 18.9984032, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C28H30F2N2O) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(F) * Weight(F) + Count(N) * Weight(N) + Count(O) * Weight(O) =
28 * 12.0107 + 30 * 1.00794 + 2 * 18.9984032 + 2 * 14.0067 + 1 * 15.9994 =
448.5474 g/mol
|
化学構造 |
---|
![C28H30F2N2O - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAACICAYAAACV6zzvAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEg0TuXpbZgAAAAZiS0dEAP8A/wD/oL2nkwAAFwNJREFUeNrtnXuUXFWVh7/qdBJIQrATCCESg8hTSMQ0QUgCSIiCaEaiZDGKZHxg8AVRQaMZZqYdUHGU5eCDAL5xVAZCHAcUFVDE8LIrhEAEA4SXkMAg3ZAE8+h0n/nj7Os9XVZ1V3VX3Tqp/n1rZaXvrb5Vu8+591f7nLPP3jmEEGLwnAB8AdgCLAHui8Go1nx+r5xzM4NT65rUV0KIQXA4cDVwKzATeDNwO7AoBuNcLjfN5XIX9DQ1Te5papqcc26sukwIMRCmAyuAHsAB24DfAGvs2AE/BybV1chVq+a05vPLwnM59Z0QogKOBJYCp5t+bAd+AFwEPG2/swC4AhgHvGjD3avqJXo5564CVtmpT0n0hBDlMAv4DPA2O34Z+A7wJaAD+CDQBFxmr+8LXAnMs+PrgI8Cz2ckdsflnDvR5XIrm3p63jO8q+sCgP2efvoldaUQoi9mAzcEQ9bNJmwTgdHAJ4EN9tqLwCsKrl8IbLLXnwPeWUtjW/P52a35/A2t+bxrzed7pq9adU7h8FYLGUKIUmJ3K/B78+42m1c3Bfhn4AzgEeBS8+ruB84zgQu5Gphq7zUBWA5cC4yvprFHtbe/ZfqqVXcE9nYAbS6X26iuFEL0xVzg7sCz+wvQZh7cHvj5uReC11fj5/D6myrL4Vd0N9t1zwKnDdbYGe3tc1vz+bvNs3Ot+fzzR7W3tx25erX3OJ3L4ZycOyHE3wnSPOAPgZj9n4ndnsBYE7uO4PWVpPN1lbA/fpU3eZ9r8QseldA0bPz4+a35/KpA7Da25vPnT1uzZrS6UwhRimbgY/iVzUSEnjOBGwXsZcL3YhXErpjXt8XecyPwD+WInX32vYA7YsWKO1vz+Wdb8/klrfn8KHWnEKI/bg/E7Angw8BI/NxbG/BSgdjNqfLnHwDcVuD1tZQQ538C1oX2jp469X0HPvLISHWjEKIcxgYC8jlgBLAPcAnw1+C1m4E31HhovQgfAuOAJ/HzigDD8au/Dwf2PA4sNnEWQoiymUQ6dwd+oSIZbnbjV1mPzNCew4B77PN78PN+TwVi9ycTwGZ1nRBiIBxuYrI2OPddfEze9DrZ1IyfT9xOGvu31sRumLpMCDEYjjNR+X3BUDMGvkE6x1f1cBPFrwgxNEkWDDqCc66O9nwf+DYwBuiyc3fZUHeXEL1JwPeAr+KXvYUQcTGuiOjVk3cDH7ChbUstbau26CUR238E3gt83Mbkb9Q9JkSUotcZgS1j8Su1m83Lq6lt1RK9vYCL8allLsGvBD2F366yD37f3aXA7rrXhIhqeNsZkS0dkXqhvdib4hHbJ9nr4WqMAx4Fjtf9JkTdSRYLPhqBLa8n3ceLjRQd8NqYGmyCeXQv0zuI8Rh7fQ4+C0PCNGzrCD4G6DIUXChEPfmxPY/vjsCWk8yWW+14ox3vG0NDvcoEK4nY7sHH9cyw15N0NA6fLHBMcO1w8/p22Ot/DK4TQmTLL+05PCUCW043W66z4212vFs9jdrfxG5r4K3dALSSZmi4J/D6nsenlC62Cfho4EH7vS7zGOX1CZEtyfN6dAS2LDJbrsInJnU2iqwLr8anfO4KxO5a/JaRROzaKZ6Opi92M7Hbadc9YAIqhMiGR+zZOygCW5aYLZcA+9nPf87aiNfiM54mYrfDjg8hTe9SKh1NJRyD31MXen0jdD9Gx3zgGvtCU12VxiBJBDo+AlsuMVuW4Of/HT4TcybMMnFLPLDtdnyQid0C4KFA7J7EZzwYTCjK7vZHd9t7rsGv5oj6M836vyfo81/j53bFrkuTPeM9xLGn9Sq7txbhi4Y7fMqpmvO94MbeCnwdmEya3iXMZVWL9C4zSVPI7DAhHK77sy4cg69Z6oL5lXX41OFJAZgPqJl2WVqsHzsjsWe52XO6jSocvqZuzZU/+Ta/HnilDTMXBmN/B6w3Na5VepdCr+8+4HW6RzNjFr0rX23BL2AlBZv3Dm5Qh18B3K+O9h6PD4XqsIckmkwcDo510ObgMw4OjqyfDwie5xhIIj7m2Jepw5eXrCnjg5sc/HayMJfVA8A/kl2CgtmB2G41IdZcX23bu1SZv2IswK/QJ17fooztPYneGXeTf3cQgcA4OMPBLxwc7WCug1Uu29x0/XGUtVc+EntWmz2vBy6wn79cD+Vfjp9MrFcuq7H4lePkhv60tKkmYhcWadlknnY5hVomAj9Lrx1zPbiJGdv7ktl7fvAlvRU/IV43r8/Bfc5vv0yOT3F+bjQW3kQ6PxsDT5g9U4DP289L66H8Y4ljpS6p0PQHaVTV6KvMX6Us8NffdBu4TnCLamRvYRxoob2FX5J18/qcF+DweLLz9sTCGdZG1wTnxtXRnqQY+Fhgmf384aGm/J8FPoUPVMxM+RucwcRV9jc78krouRGcs3/LwU0YpHQ0gTsdPvXjwN6N5tX1VebvFHyMl8PvHFqSxbSMgyYH8xzkHDzigukYB60OfhrRvfBha59ldrw3vg7tlfTeRZUFzfj1hC67R68x286oh/LXk7oof4PSq2weg4ur7O/RXwCuw4SvA9xZAxS7eeDu9e+zbRuMvBc4l/JDo/Ys8PpWAgfWUOwWOHjQFH++g/9w8Bl7vdnBjxy8y8EUB0tdfaMSmvHbvRzwQzs3nzQpyHqyTQoygd61On5tx2/KWvmpc6fURfkbjBHA+6l+XGV/MrAvuBsCr+9acGUkknVNJpoPBdc+CW4xuIHuwTwVeIY07KZqXp+D4Q7eZ15dYvBjDk5zsLuDLzu4ycEvHSw2D/Bm+728gyMyvh8KQ8822HOWeHeHB6OAngy9vknAb/Hzw+Cn2Bx+yq2mLLUP+nwED2sp5X+zdKxsRps3F4YanU1mK+AuB+4ccJtMD54F93ZwZ4OzcCe3J7iTwQ0HtxDcukDsHjexq0Yc6CsKvL5BBVc7GOFgoYOHC8RusesnbtXBzOC6HQ4uycDrGwl8iHSxwJnwLSdN/vEwPlypMBXcenywcJY8TUbb475sH3RBBA/sIaQl3zJV/gbi/ebZdJnY1alsnpsC7hZwPeDOBLcd3CfttYPB/Q+4uwKxe8gPiV0t7F1gX6TJqu8iKluo2+2j8H4HTwVi96CDM10FK8UORpnYddt73OP8XvZaePqLSOc3k8xGYRnFqaTbSRPvbnQf52stzm2Bra+p9d35HfugGKLsjzVb7rLj9XZ8gLSsbBZam/2g/qa4HLgTwU0CdzO4u8FNDkTvk+DWmrdX6zCTCVQeXD3SxOPp4bBjhxe9B8zbG7C9DmYHQ+OtDpa46oTZjLYpjGfoHWdbKvRsOH+f6Pe4Ps7XYlRyPmkOvWQOtuassA+bH8EDe6rZ8nM77rTjFmlZ2Xzc2uyr8ZjkJoG7CdxJ4FYEojfcC2OmlBNcndR7CacJ8ufAqa5KoVwOxjr4loMe5xvmBww8zGaMid2GwN419reWY+800iDhMNFveH4n1UsFl9gbit19wEfIaBPEbfahJ0TwdLyHdGVpmHVANypXWQmfszb81/hED8D9BNy5XvTqxj7Bl70DfoHffrmHPYzPBq+trkA8BiJ+p1zuPz9ZcFlcwf2eiPMLgb33DtDe4TbETBKOrMUn+i12fqDTTcXsvRMfYZDpl9/99uHTIng6zjNbvka6Pe4F6VhFfN3a7dxIRW8SuMfqLHrhVEBn4MlsCR7G28kgdMIoDLPpL7h6vAlRR8GwcF4VbHkD6ap/mOi32PlyF8cSeztrYO+ASCY794vgJvw3s6UNH1vl8PtwRfn8l7XbmRGJ3kRw1wXH54L7USTGTbShVfIw1/Nh7C+4ei+KF+Oqtr2lEv0WOz+9j/fpr3hY3UgK/IyO4Ab8T7NlMT6VtbagVU4yVDo1PtPcmeDeWod5vP7IWXu9LQJbCsNsfm9eVmExrpXAiTW25ViKJ/oNk4L8e5Hr+iseVldGkiYMjYGrzZ6FwMmkq2yifJJ9tcfEZZbbzaI9tqqLymI+6dziZtIQkp+RbQhXqUS/o/BbRsMhbn/Fw6JgX9J9jTGQpDh6G/Au+/nHuv8rIom6jyyPm5tkoveMuqhs9rL+3GxfZvXML9lXot8plC4eFh2vJQ1cjIE7zJ6Z+ELEDvim7v1KWPE7+Nqd0DYhLrvcESZ6a9VHFZHEFr4zAlvGAJeTJh1+Cr+6ndTT2YmfUz4s5gadTYYBgWWQrA4dBlxoP1+k+75sYcmB67JdEM2R2Xa8id7t6qeKSHIInhiZboSJhrtIi4dFTTNpHq2O4HwSH1cPWgJ7kp87dd+XzVjr102Q2xmZbS1F7jXRP+MifA5W4hc5vmL33EU2/I6e5iI34kgbYl5nf1B3nR6Mzkg7O3ZiFhb1Z2P16TP4efddiibgjfZzsrf17fjJx0uA35FtMeAx+JWgLfiJUnkGAxeWDtkmT08UF70ktfUsfCDkctIAyVn45elMss+a6G0gXUnWQ9JYD4imKypnOD5+tou0cJcYJLuTLkMnRXYPoPi2mIMytm2tffYR6qZycQvS5J2xsfIL8NCT0PEh9VPZ7EOa7VpUmbeQJvALt7+E56uafbYf5pLug5yr7ilb9M4x0bsiQuN+Yv35LvVT2RxqbfaQmqI2FNv+cmAf52sldncFn9WN3y1yIXVLhrlLid5nTfS+GKFxv7Q+PVn9VDYzSTORiBryVnrXFliM35sYnh9I9tlSJJW6Csv8XYzPCRduf4mhaHITPh5pVHxd52aC+xefuDM6knKeM/SIVfQsOuBGNUXtaSHdB+uAXwGT+zg/UPGYR5oSPpm7aMPH/iTMovT2l6zFbh5p2vFtwJxIxO4wH/TrrBasm+69vqh41NrtQD1eZXOWtdnVaorsCLPMht5dOdln+xKPBcCDgdg9i58vLFWpaxS9Nz3fTXZbXYbhk5uG9ib/duJrjOxW325yrVZQ53I7PgHcssjupSRx5Dg9VmWz2NrsMjVFtkwArg8e9JvwufdKnS9FUobuT8E1T1jHlisac/GlDB1+c/MSqlNboFJ798FnmEgqStWqhkAlovddcL8A94YIRa/JviC6a9hfjUgbaX5JUSev7y9FvLv3kGZwvaIP8QhDYx4z8RhIvv2x+IWVZNPznVR3z9+IEvYusr9lMukK9utIawiEWWbrJXoHW/GdOZGJXou1kWIuK+Mya7fz1BT1Yx/gp4EY/BxfsHcS8D16F/BJytCFG5MftXPVWIk9OXjvYllmByJ2hfaGZfP2J02f844CUW+jOjUEKhG6keAWgfstuBle9ADcxT4rsVsGbhy4PSK4b15DWktVlM8Prd3OUlPE4fUlczSd9J7T+1vZPMorQzcYqhFEnZTNK2XvIfhKVV2BR1es6M5gaghUInajwZ0PbmNQM/YTgejtDm69id514J7wxbbqxhj7clTq/8q50drtrWqKOJiIz+Iapq/+Pn9fhm4htQ9oHkgQdX9l8w7Hr5olYreD/tPnFNYQuJ++awhUInZjwC0uELv7bBfGfuBOD353tqVm/4P9Xg+4b3jBzIyxwFLSBS+HX/QR5XOntduxaop4yAEfJE1nnUnZvBKUG0TdX9m8qSZuiXBtt+NKQi2OJc1gPEivz+0Bbgm4FwKxuxPcvP5rTbhmu3abXfd4BjF8xdr3DuDTGd8PjUCyiHaomiI+jsHH260Dzq6zLaWCqPsrm/c64FrSBZLtJqIDrRJXrLZAJcHV44GL4fLfBmJ328CGqu5wcPnA67uyBl5fdGX+GoCk2PgENYXoj73xOQFdMOT9K70rMx1vvzsTn88/Ebst+AWLV1bJlsLg6jb6ntucAHwp9Z53Xwc9vwI3yJAYNxxcG7gdJn7r4Oljq9TWbURY5q8BSEKiRqgpRLkswO+cKFY2bzZpIaKk4tRl+GJJ1aZYcPWhRcQug7J5biq4e/2Qt/Vh82YHsqUu6jJ/DcChwRd2k5pDVMIRwAWky/6zgVuCB3WTPbxZ7BR4E72Dq9vwqbyKlc07unZmuBHwxfNJF2kerODzdokyf7swSftuNcHrpvqxqGKIcCBpTViHD7S+EB/2kiVjgW/TO5NM8v9/A9MytKWS4Or9KV7mb7purardn98JhrTdwK34pLqJx3eevD5RCaPxyQKeNw9rzzrbsxC/WPISfgGlXmXzCsNsCoOrD7AhcFfwMNbT3kajVPsm0x8xJPQVuzBHE1dKqGZ6Z5SpJ4XB1cuBXwee6A7zRJQlpTokcaA76R0HejB+oetMeu/nrldCXyEamtDrS4ZZA4lTFKWZRuk40MIkF3cVXJtlQl8hhhSn4CfPV5FWyhOD40h6x4FuI40DTfZ9PxYI2sPAe0t4c7VK6CuEEINmFr1Do5I40EkMLilHNRP6CiHEoCkVBzqR/pNcVMJgEvoKIcSgeQs+1KRYHGipJBeDTcpRaUJfIYQYNE0mYGFxq6X41fn+klxUizDRb6e8PiFELZlPukPlUnx8XX9JLmpBqUS/QghR9WFt4sGBD03ZRPEkF1kQJvp9CbhKXSSEqCbvMIG53o6H4ePtwiQXWTMR+N9AeJX5RghRNc42YflWcC6G3TZNpLWalw31TtIWFiGqR5KlpzM4t6lOtowGvgB8DD/H2G7nb5DoCSGqRUsR0asXE/F1mT/RhyBL9IQQVRG9jghtick2iZ4QDTy8jcWWcRI9iZ4QQ8XTywXHL0r0hBDV9q46IrKlE78bpBm/97dLoieEaOThbYeGthI9IYbS8LYTLWJI9ISoAcPwgcjdNoyMSYAVriLRE6ImIpMzYemJbKgtT0+iJ0RNRSa2obY8PYmeEDUVmdhEWAsZEj0hGt7TC4WuJTLbJHpCyNOrqT2a05PoCVFTz6rejMQXtN8O/BXN6Un0hMhoeDssElvk6Un0hKjZcDIRmin4wt1nReB1ytOT6AlRdY4LxA58FbJX4YtxXwPsVQcB7ohw6C2EaBCS6mNb8bUywNeyTQoDPRecrzUn4uvqLrfjxIY91E1CiGpxCLCRtADPD83jmgLcEpy/Fl8WMitG4HeIdFHd+rpCCEHOhrWbTeCeBU7r43ytaQa+bp/Zre4RQtSKVwO/KfDuxvVxvtoMt6H1uuCzblS3CCGy8Pq2mOhsBOYVOb/BzldrKLsQeCQQu/XAV4Dd1CVCiCw4APhdgXfX0sf5gTDShPTPwfutNQFsVhcIIbKmyUTpZROkJ4C5fZwvl9HAYuCZQOzuN7EbpmYXQtSbw4B7TJx6gCuBMX2cL8UYE7twtfg+YAFaoRVCREYzsATYZmL1OD6urhlYit8v64Bzily7h137QiB2d5DOFQohRLQcDrQX8e6mAsvovVtqPNCG30aWiN1KqrcAIoQQmXp9iXe3HjgheH1vE7sXC8TuJDWdEGJXZiqwKvD6rgYuJV3gcMDNwDFqKiFEozACuBi/XWxbIIA3ADPUPEKIRuV9pMHMU9Uc1UeppYSIi+fs/9XAA2oOiZ4QjY6yHEv0hBhSKMuxRE+IISl68vQkekIMqeGtPD2JnhBDSvTk6Un0hBhSw1t5ehI9IeTpicGjBINCRERre/tYnHth24YNnX887TQ1iERPiAYnl5tALjd+1KRJ8vQ0vBViSPAKgM6WFs3pSfSEaGymrVkzGl/v4uVHDzpou1pEoidEQzNy+3at3Er0hBg6dA8bppVbiZ4QQ+hh7OkZB+ByOXl6Ej0hGp+epqYWgJxz8vQkekIMHU9Pw1uJnhCNj3NN3cOG3QTMAS5Tg9QO1coUIgJa8/lvAq34mrb0NDV9ZPX06U+qZaqPdmQIEcuwy7kL22fMuEUtIdETYmiMcOHN01et2g/YdG9r6wq1SI2+XNQEQkQierlcN7Czqadnp1pDnp4QQ2F4e2v7UUdpeCtPTwgh5OkJ0Whc0ZPLbVQz1J7/BzqCEHvEv43wAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE4OjEzOjE5KzAwOjAwkL050AAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxODoxMzoxOSswMDowMOHggWwAAAMGelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAAEiJfVZbbhsxDPz3KXQBC3yJlD4TJy2KIg7Qpr1D/3t/dKgkWgdQuo6IXe+IHPExzqnk9ePh+5+/ZV3ycDqVQv/5G2OU30pEp6eSN+X+8eu3a7m83N2/f3N5/nV9+VlUizr24PMRe/fy/PT+DZdLOVMdrIMi79ydqReqNK9jryRSqjirezlzVWnstkFquZaz1katt5Y+rUe0sUFa+tRqJL23wnjfg3QDbK/BqTUTB9D9E4+esal2pqF5iq6kbUcy4JFqU2/CcGh9GNMG14HjGnA4XwNO1Da4UZ6LVpZu3rFBmcllg4OXS7GqIaMF3luAQuyAWZpWQ8g4j8wqwbvccFbG63Abkxkc67aC2H0pHdREPR2NZoi9A9oEGjdFE0m1Rh1p3wCzLlE5qJvh+CijKO+APg+Dt9odHl0GxzZ0lC9l1HCJIZlQGr1vT91nHsUHANmOJNK3leEBpNQh0mQk0jt337EUmsjOozllY3J0lV104Rmd3MjgE3fcQrZjI/PkxtxywLRqQ/Nuo+tENjaLSJ7dSbY9KYYkKSrOFIiee4THFjkHx2pHJVF+OGX0J+/SJFmis1ca0UlyiJQ+mQnJ4TlHNWuQg6kfjr7fdbFkmc4dOR/RKKGsn0yGjFdo6w4GOUPejHbxU+PKeWC4GfVHxYQ+qb1OfWPOSgZoc0XPh+0KpfIGlc4+5lkMJd0dSnVC8QJjjFHDqWIQ887t4/Xhg+C+SvD98/XhkOD8yKGzeCh6iClj2aGYjNUOXWQsP9SPseLQOMbqh5Qx1jgUi3PdKhNPwzcSZGl4kYPWWBpe/NBVloYXRaiHpeHFEv2Wj1CBGz3giVlcOd6iL7pIp6XhxRiTbGnkdmItjSzOkpxh5EhocoaRxVkyqYlZnMVmmmVRlswsjCzKmA+ZZlHOfkoji7IkZRhZlCUpw+ht81qZrXnTpJZGF2VNyjB6tIHO0h57ZpL9pliaSc6TLTb49bfcePDLZrxtvXx+/88B96d/io+VV62jfl0AAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAYZ6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAKJElUkuq3EAQu0qWM9DTr/4fTFaGt0wO0dd4h4/KMRhsWVJJ1f4+fM553a+/9/1HcL/ur/v3/XX0zKXv+5b3keF8v8/B8+FfP6/eGZK9dDN11bpqG7vqkm1OpQMoi8ai3W4avq7YHdYApF0JGt8pZLJ4s0ryumxrSo/GEpJcF/ylLEFRZop18c5iYlDChQi2tB1cYXCs2mDzoQ1Oa4FVSur2YM3alAtPEcET4CNbghUY/MUZ/h/dTl4+NKtMb2C2C914aGxRAig2ddawlP4PzW3mEgN1lAXSf2pHdT5mrMgvD+YVkGJkPMkaIVkSqxOSScUYkzWlsTmoH0SKE33IUioeFl6wrvHOJuZ6whssGkqiyqcgOUwARGTGrFiiu6cKyUyT3SKuA0RxxSDF7SiiE0NlRBSGXWMRxJ4659LPCj++nYV7DtOYnUelHtN+PpnVOFcQDghIiWqjaUijzpWYQGX4jaTwab1//gE3OYY58tHczwAAAABJRU5ErkJggg==) |
関連化合物
ヒル方式による化学式 C28H30F2N2O
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |