モル質量 of C6H4N12O14 (HHTDD) is 468.1680 g/mol
C6H4N12O14 の重量とモルの間で変換します
の元素組成 C6H4N12O14
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 6 | 15.3928 | 水素 | H | 1.00794 | 4 | 0.8612 | 窒素 | N | 14.0067 | 12 | 35.9017 | 酸素 | O | 15.9994 | 14 | 47.8443 |
モル質量を段階的に計算する |
---|
まず、C6H4N12O14 内の各原子の数を計算します。
C: 6, H: 4, N: 12, O: 14
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C6H4N12O14) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
6 * 12.0107 + 4 * 1.00794 + 12 * 14.0067 + 14 * 15.9994 =
468.1680 g/mol
|
化学構造 |
---|
![C6H4N12O14 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAD2CAYAAABLATtgAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgYllTQXNAAAAAZiS0dEAP8A/wD/oL2nkwAAMsxJREFUeNrtnXmYVNXV9X/djA0IAoIoqCAoIlFfQRIHcB6jqNE4oAlGY9DEgThPrxFjNDgHZ8wnSTBO5FUTNRpUHHGeFUUUDYqzAiqITN37++Ouog/FrarurqruulV7P0890HVOVZ2zztrrnnEfcCtrM+hvcJDB0Qb7G/RyVFZi00uY/EoY9XdU3Nya5kwdDXY3OMJglMH/GFQ34+8PMHjMwNJedQa3GXSt4LbpZnCHsEjH59HmFD6DaoMtxZEjDHYz6Oge5JYUZ6o2ON/guxhnmmWwazOUobfBZyrDqQbrS4AHGvxJjv6KQfsKbJ/2Bq8a1BpcKkw6GmxgcKbB98Kud/CZvSRIqdfgApVlV4N3YniyyOC85nxAurk1lcQTRdr7DLY16GywtsFog48NlhVb9AxuVRlGZkgfp/RzKrB9zlHdz8iQfpDSbwneO9fghuD14wKUYzdx4QODwwx6iivbGUxVGW5wj3IrZWcaEYhddUz6RgYLDf5r0KpIZegsR3ouS54agwUGsyuwjd4zmGfQNkuel4ThGkUqQ2tx4GuDDWLSWxk8JC6NcM9yK1Vn+otIOjRLnj8pz+5FKsNO+v5rc+S7X/l6VFD79FSdH8uR71Ll27FI5dhD339Zljw/Up6/uGe5lapDzTRYnq33ZjBSRD63SGUYlW3IFuS7Ufl+UEHts7nq/Lcc+X6rfIcUqRy/0/cfmiVPtcG3BjPds9xK1aG+NvhvjjxDGtIDy6MMh+r7T8+R78/KN7iC2mezRgrewUUqx3X6/m1y5HvbYIF7llupOtSCRgje1UUqwy4N+X7NM1bakLaX6vxIjnwXK98ORSrHtfr+rXPkm2Uwzz3LrVQdapYmu6uz5Nm7yEPargYrDKZnydPW4CuD99Pe38jg2XIe5hp8aPCFQesseZ7R1ETnIpVhXK4epEGVRgw+pHUrWWf6u4i8WZY845VnzyKW427ttRuRIf04lWFc2vtT9P5Cg8PLtI3+oDqOyZCeWvSZUsQy7KPfuDBLni0aMvx2c2tJZ0qtvt2cIb2HelYfGbQpYjkGaML7K+0ra6P3OxqMNVhq8K5Bp7TP1QRze2Yw2aBDGbRL3+D/nQ3eFwYnpE41GLQxOMRgvnpW/YpYnrYGnxp8btA9Q57b1Aa7uGe5lbJz3Z1alDDoGby/tcFr6nkd0AzlGKYhthks1qbnpfr7CYM+WT47Ojgp8qbBpglujzGq9+jgvfUNnlL9lgqbxfp7psGQZijXIeLCywY/DN5fW5ubzeAf7lFupeRMQ9OPZ6mX9DeRuVbOtEAEntecQ0X1WnbTkanxBicb/KiBnx1kMEPl/tZgVMLapovB/wXnhy9KS6/SQ+gUYXOmjnq1bsYy/iLgxnxxpVavm2K41T7bHk83t2KStY9I+obBWjHpG2uu7CKdizzEoEuJ1aGDwYmZ9g0adAqOqaWGuDUJaJstNWQ3g2+Ktb2kQGVdU1uJxhlcaPAbg41i8q0lrs3P1jt3cysGSasNpsmhHjCoSmg9blIdpmULG5U2xH3ZYEAJ12l0MDx9qZxCPhnco3o97oEF3JqTeCeLeF8kOb6cwQ4aRqXqsnsjek2HlFhd1ggm+hPTG21kHXtoscMMTnJPdGsO0m0a9CBGZhh6HJIwJ/pPMNc1PssQt3OwdeX7H/LcH8DalkibvBnMNx5aBjw7JMNUyZ5qpyUGm7tHuhWThO0USy1j6B6Du5R+doLqVWVwhjYsm8EjOYa4x1/M6Y+oM/U8WL+WKvtGvHNkMPFf0sPtRrTH2arPXRnSUyHIZlRiTEO35iNiKorG7LjQQQZHKT027E8C6rejwSeqw+fZ4/bZELDZEr1vwA5q5tJ2ArsFzP7ImU8YXF8uzh8siJnBkTHpHYMtR5e4Z7oVg4Qj1ANaHncG0qCf5rbM4GcJrmdPgwdVjxVaPcwwQW6dwe6Q6NWBTWieIa4NApuh3/0WbFQZ8u3nQfTjuFXboTrGWGuws3uoWyHJ18Vgjgh4Xkx6tVbOzODOMqhvKwldbUNWccHGgC2VAL1Q3CGujQZbpN96E2xwGfMutQjzVNy8anAmd24l31HiVnji3SJivRh3JMzgf5X+kUG3Mqr3Hlq9NYO5x3FNlnBGNhTsPQnR12AHFrg0NWB/Dq5+mAzWocx5t6ZCwMeG41fk5GeU/nf3VLe8bTE1B+cYWgzR8aQ6g73K0OnWNnjobQY+DbYcbBxYtiHuPwo/xLVNwF7X9y4GO7qCHra7qqe9PDyCFqRvJG7aYmoOdo91y4duvbsxb87rbPZ8XHQNnVSYKUG8ooydrnU35l0gETOw+8C6Z8hdBTY2GOI+D9Y3j1//eTCEnQn2g4pjIVwpjq0W8EHpY95m4PRuzPsv2Prut25NoVk12DQ52gORI69GtOuCA/Y1FYDJLmCfCZO5YNtlybsN2AfK+2XT5vWsQzBMnlTuQ9gsgtdOgSeyRMq2e4TT45l74G5umWl2sgj0BVivGBLuHmwA3aKCcOkDNl3Y5Bridldv8J64B0YDf28o2BEVz0YYrDtz6wz2jsnRA+xTtYufwnBrFL021VyRga12mmIET/Soo2pOQ+6OKFN8WkvoaoXRPWDdsgxxTwIbH+3di81zFthxMe//DOxHzseVond6NDlaNWcET8SE5rc9Ne2wBMxPYRS5MTobbGiwTrIPNls7sFflyBkuQra7hvH8O5/S6/bKPsRt+4DNE1YfRsPY2HzPKs8bYDGBT21ulGe19yd5724VH6v+lF63D+P5d8DuypBrorCeAdY+yXWVlmxYrFD7TS3Y4cFxKwsOol9hsGYCob5U1ZgNFnMRs/0y2HqxgbuhrQf2VDDEPWP14as9q16HgZ2WW/BsK7AdwO4Hu0j/H+RYr5xSmC8sj4pJ7wg2S+mJO4WhO1muDLZDpc54v2JwWEsXLnU/wxsGx+tg8yiDO1TIN8N9aQbdDXoHrxITRBsBtkKOG3OjlPXTzn4DO9ydbyUubcGuDFZx7wTrkiZ472jou2j1B8Vqgnc+2I1gb4M9qv8f7TivMtQ3YblRTPpQsGWactg5QWLXTZpRq72vo6QpJxi8Ja0Zn9YL7J32alOswu0sUXvYoF1M+vEq4F+D925UwVOv80oI7i5gc0SkmHJZtVbADOz/3OliMdxXvY/ZGQRvgHp69/uQNm+sbxMXnwKLiW5j44LV9EScwjD4qzTj6Ji0Gl1NUGewk95bK01P3ipaBBmDf+rHB2bJ84LO+yXg7tPoIDrYixnmmc5V+keZJ+jd1AveLGZI+47+f7lw3L8Bgncd2GGOaSzOawbbfv43Jr012DNKL/lTGApTtszg6Sx5fiBBvLu5C1elkDwf5Mh3rgq4f4nDfWAwRNg4Jn2Ihgh10UqYWyPxDQVvDT00PowinmQTPLccuO6iYevy+NVs6x9MwZR0jECD/aUVF+TIN1uRZKqas3BdVLgnc+Q7TPlOLHHiHKuh1jExaR00l2RR78QtP8GDyPnMwC52wcsb2yuE5bv1D5BV0o8Rt48tccE7UVrxqxz5UsFqOzdn4XrqR/+dI98Bynea/l6vhCHfMMP71wWROWrcwQoheAD2sI6fbeyClxe27cBeE0evbRy3S0Lo1tO/p0krDsmR/1/K16M5C9lO83ev5cg3RoU7SpcPL1HMuOla4R0Z3t1ags2xR7CRcwt3roIK3kbC9U4XvLzxHQz2vbi6TwmLWxeD4Yqufa+2niyRnhwtrTglx3c8pVXcNs1d+Jm6P6BNljypUNRbGQwILoxJf72n2F8nGWxXGudSba3gqM6p7lSFFjwAu1D4LnPByxvj04Tl52Brl4C41ciXT5Jvv5/B9z+WNvxQf0/M0dH61uCNlqjQhdmi+2rP3XyJWXXw/rrq2Y2Tys+PAWG59uNMNhir6K6t8izxr7UCm+n0xHlK76i/1wS7VacDrnaHKorg1YC9r2Z3wcsP42rtWbw14i5oE/KLem0a85l+Svt1TNoLDRdOq1Yv80iw67fihX/Lh9P9+luDRw0u1nRXn0AXWinI7leZgpkaHKnvGdcSgtdD9x7MN9gxLa2nLoKxXDfWq6KDdZ/oBA13l6QBVbc2n32oQ+sTFPW2kZFu7YLgK/eNSZ+ktLTJUPtFEpb1kyl4ALafC17BcE6LJmOdA84/GXMCZpDSYlZGbS7Yuhl+Z93ojLmNA7s3OF5oYFZNbW0dVQsa22kJwto/lD5HZ7CL7or5pMWC7BoMUwHqdOnxFK2ifKf7EM5q4vd20Fj/ZIPbv6PDM/G9YfsoOlNoZ4LtFH8UbDXBm6sNxh2zC57trxWwfysO2xVgv3enalKLrrHqRuTV0rtmbzu3JuLeOeB8zFG0dMGzLuL5FWALdS73CrAfKqDGXfK5OF/8L9jtijI0fBzjOjTR98/VHN130pIpuo0uFVF8y5Yeq6+hJeU7NaH4gLqsBb5rwLqA7Ro8Vb7IAPx7Cv89Fmx4tIq1iuAdueqWiIyCtynY3lE+e0T/382dqCBteWL0cmsmwbtegVi/iuamMwpee/F8b8Uw/Ln+30enZCy4pS412jqo0HOGBpsZXCIteUracnxc8NNKaswqbWn4GdhVaQfUw9diHXBPCV5fPamWr7rymnFIO8qHtAVvO7WNWzMJ3rUKyFoX8bwpQ1qrki9s3PTYhm6FbuDWmjwdre74m3qqVaUJ3oYSwun1jZdR8LaJn9R1c8FLkuAB2M0Sve0bIHhX1S9+uCWp0TukDWn76u/f6e+jswuemwte2QheL4U1e1MRbrIInlvSGz9d8NrpyNg8hSJ3wXPBK3PBA7AT9N4pLngVJXigkxSmWG4ueC54lSB4rcBeUk9vexe8ihI8iGLb2VKwJ1zwXPDKX/AgiqxitcGtfC54FSR4fbTnyFzwXPAqQ/BAUaTNBa/iBA/ATnfBc8GrMMHrFuxldcErw8ZPnaWNOS5jbXSi4sXVT2C4ueAlFufUWdozM6QfnvksrVu5k8M3U7rgObfdyp4MHXSfxTvxl6G4ueAlGutW4vYtqwcXcKtUUsyUE+7oWLjglRnWOwnvWY6FW4oUF4kUHvfOBa/csL5GeF/oWLilSDE0CDdV7Xi44JUJzlVBaKghjodbSI73RIxtHAsXvDLBedsgVp0vXLitQo7LRI7LHAsXvDLBOXXp+aWOhVs6Obbxp6ELXpmOWrZ2LNzSyVEF9qEIMtTxcMFLOMZbBfPS/gB3iyXJVSLJRY6FC17CMf6jcJ7gWLhlIskOIsk7joULXsIxfls4b+9YuGUiSXVw+fYPHA8XvITiu5kw/sxPD7nlIstEkWWcY+GCl1B8xwnjGxwLt1xk2V1kecOxcMFLKL4zhLFfK+qWkyxtgpvUN3E8XPAShu3Gwnd+dFGPm1tu0vxFpDnLsXDBSxi2ZwvfSY6FW0NJs49I86Jj4YKXMGxfEr57OxZuDSVNO7BvRJwNHQ8XvITg2lcXbX8L1t7xcGsMeW6tv7/TzQUvEbieKmxvcSzcGkueA0Wepx2LgmM7wU8AFAXXZ8TZAxwLt8aSpwPYIg0R1nM83Eqcr73F1e/8Iiq3ppLo//TEPN6xyAvHh7RN4pwM6TOiPG55YHyCuPoPx8KtqSQaJRI96ljkheOzwnFJ/N5GmxvlccsD48eE8aGOhVtTSbQG2PdgtWC9HI+8BO8z9fIecsErOL5rg63QA8UvknfLi0z36Mk5xrHIS/DeiVa8zcAOc8ErKL7HCNd/ORZu+ZLpCJFpqmORt+C1Vdiiz8C6uuAVDN8HxdHRjoVbvmRaE2wp2DKwbo5HPoIHYD+Wc17nguf8dCtNUk3VHIkf18lb8ADsLs2L/sgFL29s9xY3fQTiVjBSDQLr6TgUTPDWA1uoc5/VLnh549sz4qibW/5kGgV2BtjmGdJ/BXaU49QYwQOwM+vnnVzwGoDhUeLhRhnSx0ZcdXPLj2iP1AcEtTYx6bPAXnecVsGkvcIUnZxF8NqCvaWb4r6oFzw7WZ/1w++r4vW6ePhE/C1kNi/iqptb/oK3XGQ7zQUvJ14Hgr0vvBZGE+lxggfRBTNWp7zPKu9C/f1+9F1ugeAtEzZHuuC5FVPw5mo/3ndg/VzwYnEaBPaf+kgoNhNsz8w9vJWfu7Ve8ABsR7BXg+95FGwLx9deB3sNbDrYV2A9XPDciil4G2kn+/0ueKvUv5uin6yQQM3TfFLrIM+FmaOj2Dpgd0R5Vr5Xrbm9z/WdtWCTK3vhyF7Xg2Co8LjJBc+tiIIHYJfJAfd3wbM20ekT+1KYLNeNb2sV8DfWBBuvB42BLdDEfbvKFTzQFQR1q94564LnVnjBWwPsI020d6pcwbNdtYiTGnY+XNx7fG1jsHuD35sVheGvWMFbW+L/dr34u+C5FVzwIIpGYQZ28eqCZ9VljsVGYFMC4XkH7KBmFtoZwe8/BDa4zDGvXl3wAOw4YXC6C55bEQUP1KNZqp5HKHhXRxf/2LjM+6USiUEn1WlJsPo6rmWGltZGc4RfqyzLNIe4Zhnhvb7q+BDYnzIIXjXYc7q/Yh0XPLdiCt4mEry70gRvdtD7MLAXtME2oeK3cvHgs7TFg7VLoGzdMyyWtEpw7/lMcSbk0Ox4wQOwH6pN/uyC51ZEwQOwi0TI7wPBqwEbKVH4Jo24b6pXNDQhFd8BXnogKP/jYFuWYPtsqbKpnPMfiMqeCG5tKJGensaV7zRnOTqaN84keKCFohXq6brguRVN8GqCDbYxixbWTnNOE4LtFRZsqp0ANjx+13yLWh9gMlAH6z2nLTmjS7Cc6XiPjHD9xfOAAfcC/UqwnIP14HszjRML9KA8KP5OioyC100nVcwFz62Iggdg+2UWvFXytZK4TQD7NI3oc0pE/DoCFwCLJRiLgHPh6ZrktNXTNVGZWaQ6LFadWvhSm5UiNyut7edJ5EZGR+2yfkcGwQOds3XBcysIWdeJJpEzpvcD69OI72sFthPYNWAfpznA3Ej8ntkOaK65qCrgIGCORKIOmAJskOBGWxeYCNSqTh8DY4DmWkVvBTO204Nsblobf6y236lx843WJzPPrErD43XcX92aInLVYLeB7dUMvzNUT/936p1i+8eArzS0HAm0LVIBhgJPShQMeAkYXkYNOQx4Oqjf88C2xRM5hgMTgE/g6scCkftA4rfrqidQisKpvcTdavdjt4aS5iwR9ZPoftpm+92twP4INU8FTmoSv0nA3kAhtoKsox7QCn3/J+oBtSrDxkz1YD9M68EW4q7hdmqTSWqjoM0GPBW1pW3VjPzpIM5axGE3t9ykGaYVr7oWjnA8GBgHvJgmft8RTciPBjo18jvbAGOBb/Rdy9QjqYSbrjoKz++pn6McBzQ2DFV79bonA1+ntc17wrMFe8m2u7aqLAfbxv3ZLRtZugQrrxeXUMH6Saimq4eScrDFgfjlEq2RwOzgs/cC/SuwkdeTWKVw+FD4ZbMOgch9myZyb0o4SyjisF0SDKW7ul+7ZSLKLSLKi7lXzVrMNgjErzZwvCXAQ0oLo4psAtwf5Hsb2Mvbmp2A1wJcHgHCqNZrSginUL/qmy5yG5coj9uAPSMuT/GmdosjyVHBsamNE1LoPsAJwGPUz8elhqpTgfuA5XpvHnAc0NrbeqW1FibzhNFyYTZVGKbwXCGMTxDmSeBz/2Dz+5He1G4hOQboTKKB/SyhleiuHsm9wFI56gdy1olAD2/njNYVGC+R+yAQuenqMSd0u4cdLE4vio5DurlFJyJeFjH+ViaV6qYhmhFtvHVrmF0QDG/L5I5Xm1y/Od7vCXHDrqw/pG3ltFp5nZz3N97GDbbfCLPryojfnRQ3z8Cu8CaubLHbU9tPltVfCu2C54JXToIH2ty+VFwf6c1cmWK3dnCu9dQyrKALngteyPfTxPUvwNb1pq4ssasGe1AEmFqmx3Bc8FzwQs5Xgd0X3ATXypu7cgQvdev952V84NoFzwUvnfc9g1HNGd7clSF2WwXzGeV8EYwLngteHP/3EPf96FkFWGf49T1QtyC6crGszQXPBS+T6F0G8xbAD+6hMs5RV6zdEhF64NQSPjrmgueCV2zBawudpqqut3izl6f9gvooGQMroL4ueC542aw/9VFzjvCmLy8bQH2Ui9EVUmcXPBe8XHZEhXUCKsLaAM+qYe+ooHq74LngNcRupj7adVunQPLtcuqDM1bSBK0LngteQ6wTMEv1vswpkGzbgyhg5jJg6wqruwueC15DbSuiCDt1wD5Og2RaT+BTEfi0Cqy/C54LXmPsdNX9CxIbDquRZtDaYHuD3xicavBzg74JrEo18CD1oX4q8QYnFzwXvKb6zKNJ9BmDvgajpV2/MRhhmQLeGuxs8F5wgeYS/VtncKvBGgmq+xkV97RywXPBK+yo6PQECV1ng9ulVaF2mcFsi8L5r/KBrQ2WGsw1ONB0k5PB+gZX6YNPptTSYIjBSYV6nQZHAycV6HUF0Zxdpc9HuOC54DXFUvPey4E/FcovT4OjC6kZBkOCUemTErsrTNdvGrQ3ONjgE2nb1qHgvWLwvUUXvsQp6ASJ3tH6+2RLu049n9el8ASrXpJSiFelrzi54LngNdUuL7Q/XgpPFFIzDE6WFh2tvy/JoF2bSfBeTr2xuT5wc5YuY0+D5RbdUo/BDgZXFup1NpwDXFmA10zqb5Vq64LngueC1yRrA7wqLGYVwjfPhnMKqRkGO0iLnpQ2dc+iX7dJ4zbD4Jf645Qc4+TX1QusKtFGOgvfNe6C54JXKAtPJ51ZonN3VdKk93LkO1YadxQGZ+qPg3J8aKrylerm3SVqnGOdqy54LngFsWOpv/O4FAWvizTp0Rz59lO+MzE4Q38cmuNDDytfxxJtnNRlyRc5T13wXPAKYhcFo6ZSFLxOqQXVHPl+onynYXCE/jg9x4dmWhRdoVRtV6K7RGuBXZyrLngueHnZ9oE/7VXCQ9qFBnNy5DteGvczDDbRH3dk+UBvg1qLNiai5d4nCvU6HyYRrdTm+0pdovwFsJYLngueC16TrCv1+/HmFMI3z4dJhdQMg4OlRdMMVhj0yqJfd0rjNkq98bSWbjfP8IHrw2FvQral/JvSXWBxwXPBK1WrAv5Jcral/Ex/X5VBu7bUKu7j4ZtDDBYbfGpwqEGN3u9rcJ2+8D+pFVr1+LYv1Ou3sI260IV4HQjME9DHu+C54LngNcpOEAZfEy1kFsQvfwvbFFIzDHpLi6qD9YVrDDbQ+zUGhxl8bvDdap05g+EGb8ccLas1+H8GHRLUaD+hfnXpf1zw3FzwGmQ/ABYLg0OSUmiDjgZ/lValHy17yzJFSjJoZbCdwa8NTjE43KBPQhvveuo3IXeoQPK64LngNcbaA68nuf4G62mIe6o0bBuDVpXUgK+pASe64Lm54GW1Gyu8g1AWNjjooh/qgufmghdrB6re3wNbOA3Kg8QLSGZsPxc8F7xi2nrUL/L92ilQHna3GvQ5ooPRLnhuLnhRuLfpqvN9VPY2rrKyrkQbKA043wXPzQUPgN+rvnPJEm3ELZk2gvqjMju74LlVuOBVmj9UpJ0fEXr9B8HK/YnmgueCl8GsOxz8YIWNeCrSWsNRk2DFCrC7XfDcKlTw7gZbAZMmkemSG7eyaew+YPO0EbucxcAFzwUvjv/HifsLwPp6k1eG6B2gRv8erFz3HbngueCl834w2GJx/1Bv7soSvYlq+DfBynFnuQueC17I9/Zgr4nzN3hTV57ghQS43gXPrcwF74Yyf8C7NbKLf0iZVc4FzwUvxfPUFM6SMp7CcWsgGY4PJnE3cMFzwSsvwbM+YF+J48d5E7sB9k8R4kmwpIeTaUV0Z2cq1M8k/MhQQ6xKWJmw24HEhxayarBHxO1/gzkP3ACsK9gHIsa4hIrccGAC8An1obVT9xI8TxRV2i3ehlB/zcDnAX5fAZOBkSTyYncbJ05/BLaWN7NbSI7to82YVgu2UwIK3A7YB/gL9dEuUq9ZRFfsnRuIXi1wE1kuO6lA6yVMaoMHxLnCblYapvOE9T7CvtT5PCLgsx8dc4slyQV6Is4t0aNnNeptTCa6cyB0yDeB8erphdYRGEcU6yx1x+g4ogCplWptgLFE144asEy94y5p+QYDZ1AfUST1+g64FxgNrFGCPF4TbI64/Hv3a7dMRGkNNl1EuatECtUhELlvY0RuHDCoAd8zAJgSfPZdoktaKs12Bd4KcHgI2LQBn+snkZwO1AWfXxyIX5cS4fHt4vBzYG3cr92ykWW94OjZsS1UiK5yoCnqkcWJ3MZN/O6dqV/QMGAaGa7nLDMbSHR1Z6rebwM/buJ3rR+IX23wnUskoGOBni3E31/70TG3xpLmIJHm8+bbpGk9wcaATYWhMwMnWgE8SnTlZO8C/VhrYAzRheUGLCe696NHGTZmVw31l6qu8zVMLdQiRG+1zaNqK7VbzcyoLW1M1LbNwqEO4qxFHHZzazh5TgPrX+Tf6AE2GuxesGX1N8v9YxowVaLUs8hiMEGCVwwxaElLF/VaTQsUU9R76jenwqhpwb3RtZoqGQvWu8ic6h9x182taQTaQT2+DJuSbU+w3RvxfeuL+NPlCBbsgn9Iac09HBoI3F+g4V4p2M7U31hnwCPNP2y3rnqYTQFbFLRz6njXOLBGTEvY7uLhOhnS94u46uaWH3EfCSaAq2PSZ4G9nuM7+gUiVxcQf7F6d6PBSmHCe39gdr1QtL0TvhmQnLb6ZgBU3RkI3WzVqaU51AFsJNhksG8ziF+OhSd7Xfnvz5A+L+Kqm1v+gpfqiY1puODZYLAzglXf1Ou7QORKcEtDuGXj8sc11J4A1rmE26ijRON72PZxSnrrjdUE4vd1jPiNBxueQfBSPDzABc+tmII3F+xhsPmrDzdDwbPBcry30og8XwQ/KHLORNg68M21gZN9CnZkfC+3xdqmWmX6tH6u7MNro7InglvtwHbVA+XzNM68r/eHR0fC7HW9XgL7ZPURgQueW2EFb4icf3IWwQuF7iuJ3EiwBC8C2BCdMU7V66VoF3+Ll2sY2NNBuZ4HS/DxOWslcZsgQUvV6+2gh/cq2C56/0oXPLciCh6A3ag5uJ0zCN5JYFeD7VgGQQjScRgZ7N43Dcv7tkA5eutBkpoL/VjTA2V0MN5aiUNXR5wKBQ/A7tSxsS1d8NyKKXjdwb4EeycKIJoueGWPRQfNSy4M5iPHg3Vqht+u0W9/Gyz4jC/RedBi1D8UvPW18vtC/YPVBc+t4IIHYMfI4c6pPMFbiUGftF7W3OL2smyk5rTC3mW/CsM8EDwAO2vV00AueG7FEbxqsGfUu1m/MgVvJRY/Ans2EKLnwLYu4PdvCfZ48P0vR1FtKhLrdMFrqznjeRp5uOC5FUPwAGyo5lD+VtmCt/IBMBrss+BUwWSwtYM8d4G9l/lssj21arAG667J+xXBAtDY8psXzUfwIFjAuMIFz62Iggdg18i5F1a24K3Eo5O25CyREy7U3+2CXuA38UerbK7ytJGwfa38qT2AXRzfOMEDsNuE+RIXPLdiCl7nYPuAC149LhvpOJWp19dZYvaVJtqnZBG8Tlp1NR2zG+x45hS8XsEDwgXPrViCBxrKueDFY7Mn2L76/7Na2U4FWN0zXvAg+kx6ultmwQNth3LBcysI0YZm3mhrVdGevEJO1JclhinB66C7Q+aseuIkFDy3DBhunZln1lonNoY6Tm6FINseenn02LwED8AOV2/kQhe8gmDbpp6fbm6FIdVzctL9HIu8Ba8K7FGwpfURQlzw8sB2v/otQW5u+RNqPW2wXRjt9nfLT/AAbFOtwE5zwcsb2/Y6fVJXZhfJu7UQoVITwrc5FoUSPAC7WLju64KXN76pS3t+61i45UumVDy7nzoWBRW8jmAfgs1UeCcXvKbjm7qD5UnHwi0fIvXS5uLFCYpjlxDBA7ADg2NjLnhNx7eDjjrWgq3reLg1lUjHldgdtWUmeAB2nwteQTC+Wzj+xrFwayqJUvdZHO5Y5IXj1WB/zZDWX6cqrnac8sL4Z+LqNMfCrSkEWgtsubZPdHU83Eqcr110nnZFdP2nm1vjCHS0npj3ORYFx/ZJn2AvCq7/Fmd/6Vi4NZY8D4g8RzoWBcdWCxVuBcb1qOxXObq5xRNnTQ1ll0dDWzcXvETg2l2cXebTMG6NIc7o+hBFbi54icL2YeH7c8fCraGk+deq9wW4ueAlBttfC99/OhZuDSFMJ200rgVbx/FwwUsYtmtrpfb7yrnRzS0fwhwih3zcsXDBSyi+Twjjgx0Lt1xkSYUnP9GxcMFLKL5jhfEdjoVbNqLU6N6FuugKRjcXvETi20cc/i46Z+vmFk+Un8gZn3EsXPASjnHqprj9HQu3TCT5u0hyqmPhgpdwjE8Tzjc7Fm5xBGkDNl8k6e94uOAlHON+wvlrsLaOh1s6QfYWQV52LFzwygTnV4T1jx0Lt3RyTBI5znEsXPDKBOf/FdY3ORZuITFag30pcgxyPFzwygTngcL6q4jjbm4RMXYVMWY4Fi54ZYb1m8J7F8fCLUWK60WK8x0LF7wyw/r3wvs6x8INsGqwT0SKzR0PF7wyw3oL4f0ZWCvHwwnRHuxkP4bjglfGeN8hjrd3LNxykaW1E8UFrwLbqCNYleOQ3Aa8QI72XDSMXS09tS2lc9r7o6ITGG4ueInDubOwrgPbKSZ9kNIviEmb63fclofgGdivXPBc8CpI8AzsbbB2LniVJ3gzwOaB9cwueHZMdBmKvQL2sf5/m+PogpdAwZuhf8/OLnjWXTy/XwFEp+n/uzmWyRW8fRURdnIOweuuS6LHRuGyrT9YX8fRBS+BgnetrnBcDLZhFsFrJZ73186FbfR/j5ycYMHrG+y728WHtC54FSJ4A3RR9398SFt5greWhrXBvEZGwRvsMcVc8JIveAB26aqh37MK3onR/S5uSWvwrVYXPAAbo7/PzS54bi54ZSN4ndRz+1hp6UParZz/yWnc1uqNjQabAPaibh77XrHu0gWvOopsbIvBNnDBc8Erf8EDsIP03sWrCp61kS8Y2HvRHLeNBRu++uquW0s05oZgh4JdATY9aKzwtUSitu7qggdgQ7SAcasLngteZQgeRPN4tgRsn0Dw1pWvLInxo8VgT4FdqTntDSsXUljT4GSDuw2eNphqcJnBlgX8jW4Gexr8bhEd7wD7IqZR6sBmgv0N7DiwYdFTa+W3xAgegF2tz77ugtdsrBkevdxaSPA2krC9uvocnrWR7xwnX5op/0j3ty+18nse2F5XcFK3Avr7EIPLpSVPS1tOMlizpcVuO4MvDeoMnjeYYnC/wSK9d1ETvrO1wWCDMQaTDd7Ud61Eej0+/AxsAdhDYOPARkYLEVm/OZPgdQ6CB7jgFYcpwxSCq0eG9BFRntXe37qiexNFEzwIoqhkWLRYJe8aekiN1TWmn6YLYC3VXxh8YnCvwRkGww1qmuD/f5S/L5SWTDF4Ue99abBtS4ndugZfqRDbpaWtZfCg0BiTVpmHg9dYg/YGow2ukWgus9UfJ4sMnlDP8aAxTGzCFYqZBA/Afh4veNbOHa4gbEndoHV/hvS5UZ7V3p8EdoTj16hpnnYNFLwazdU1QPBif2t9zQde2pf/3iMfTffbZfLpa+TjmxhUZdGUMfrcfQbd0tJ2MJgvzVk3GPk9nPYaVCzBu1yF+2mWoe6XUv02em9jg2HBawODNgaLA5BWqFc3WYI43KAAl5DYfmATow3Fq6VVgV2kdAUKsPXAXgObFR2kdstT8FLDogNyC5611tDqL2BH6f8e2ig7xh3F1dci7oIiAU0EOyzDZ3ZQ+n4F0INWGpmNNphgMN1gaYwIfqu0CcrbV59vI6341GCNDL9xuL7jsuAzw9JeHYsleLMNFhi0ypLnGhVwuwZ0Y0+TipfI3h9rF8xx3OAOlbfgzQZ7SdMHXXII3j06DrUA7CP9/xLHMSvGE4NjZCUR3cegk8H2Bqca/MPgwxgBNPX8ttP/r8kx3TXf4N3mrkiNCvdyjnxHKd8xCSXRYG1rsWie0C0PwXsnOtliFq2s+5C2gPjuqR70klIPYmuwjsF+BhcaPCQRrDY4Rlrx2xyff1zzee2bs9Brp8baOfIdoHynJ4A0I+P3G9kpctIvwNZ258pH8ADsLm0F2tIFryDY9ggWEU7OMFIp+Ye1wenSioNz5Pun8vVszsKtoR99Oke+1Jj7uBKH+4/1mzFXS6tW1AhNuntQxDwFb32wRWDP18/LZRS8PmBdHb+s2P5L3Hw8Q5zHi5X+xxIXvOOlFcfmyJdaDO3YnIWr0oLExznyna/C7VnipNkKbJlOZsQFSuyts7cZYum5NVzwILr71wzs2OyC55YD19TxyAXRg2S19BHqTS+PtviUtODtLa24KEe+OQaftUQBp6iAm2cRxde0AtslAeQ5X+SZG9+rsAOVvghsY3e2jDjuFu3gzyp4bbWhdZ7CcLngNR7nDcG+FSdHxaR3AZuj9HEJGNJ2Nfje4OVMW1e0IdkMbmmJAm5rUKv9cTUx6SepcFclhECtg/1iN2fIc6vSX1j1FIebYqmdr17ygmg4mknwILgL+AoXvCZx9Rnhl8H57e9KfzEpXDW4XppxfExaB4OnpDnDWqqA56mAMw1O1PGvw7UEXacd0gkKHmj9g6fmoTmemr9zx1uJSw+wqcJlhU6/VGcXPAC7XSuLi+oFz+dIG4D3ecFopFuO0cjAxNQKOhu8Iu2YIi3ZS/tx35bWnNXShfypwUtpx78+NbiodPbUNapGx5TLvEgz4bVDcDTv8/hw4BkFrxfY1/psSvCuVqSOGsc2Fu+hwXzzzjHp4XzzmMTVLhK9iw0+C/SkzuAFg/1LqaBrGGxo0Cvb8ZGEwH6PsH44w8rXZTszbcbXdHmsWVeLSgujKrAzJP4G9ijYOhnyZhA80H2pEjzrG+x7fCnqcbsFPtbxa7o8tjPTZoBdlqFNHhB+DyS5t6w1gF7SFA9E2gxDtM9EnN+mpw7g3XZ1VL2sp88NFYrPA0GUmvGZj35ZZ4Xx2ivLfNRP68Pt25Zg7+q7vwE7xPm4UgRuiACvenkA78btGT0p2DPayxFzawy99sq2e13nBlNngCvoFIZtr4i5KcfaI0veTcHe1PnORgxRbY3ohriVp48mRiu7FS12e2potyR+Z4RtGsSE3Nf9160pNLtRBHrlKk5oF0PCk+WRXxiU+RPVqhQeaJkweSz7JS82Jhievty0C2FsdODEL1bqENegh+bFzeCk9PSIm/aKcLrR/datqVTr1JuPnp/DBs8aXBJDxGqDaSLiA8mfu8zocGsN4q1Uj6tWobYyDWE7BVsiTAsQHfL49SEKPJAa4h5UgYJ3j8B83KA6Jv3Sj+j98gbMecEv3nHLl2xbKa5XrcFOMem9Dealx/4ro/r/0OC/39B5RjuWfJJ5Lg50R8IbEqeF8Rtim1SKzmB3BHOGEypliBscql9gsH5M+giFVFtu4LsG3ApCutQRubkGXWPSDwwClW5cJnWu0oHu5arbEw+y27o5hp+LJEpvRZFmCl6qMWBLg83f/cqcd/0VP84MDo1J76KjVmYwzj3VrVDEa23wjIh1c4Y8tyj9xVTA0wTXt7uizqb2QE3IXCerAftz4YawOUv3w9Tm76P58zSDfSqAc3/PkOfv5cI5N3/atlQ9hxm8r3p8ZfDjLLk3CS4/Wgx2dDOVsutA3p5cR9UCCfIlBq3LjG/jKm1U4ebzKc09hB0bhOV+3iDjkLENy8Ih7BvR/F2Ll7dvmfCsoueN3UqLjKkVs4czrZgp/aYE1amzzj+HQ9i2GfK2N5jwCDs9FgxhO7Zg2RvRI01Me9yk+lyaQegfKPedAW6lQ8YewTm/38aktzP4ZZwYlmh9hhq8p/p8bXBglrybGLyRGkrtz92jSqQOjZhzTESbVItDcXs/T6qcvZ9upULIfUW6JZniASakHicEQ8JnDTbIkvdACaIpcsVmJTokT13z+YRB7zLj3abB6Z4D3RPdmpN8N4p4M5r1QpHC1uEs1WFiriFsELni5lI+zJ3aN6iyfln60bYbXK92Bq+m2ss90K25CdjJ4F3dujQww9P4BIXJGmdwWPrlwiUydBqRJX0jxSczRaMdm5C2WUu31pf8EFeXSR8ujlykux0GxeQbKK6969FD3FpyiNE1RgjvCC4V/yhYUfu2Oa+sNGirQ+dnG4zX/aDbNWSi2+AnWo02g1kGWySsbaoNzlEbrLaXTUPg4cJkvDDaozCXvje4jMcGW53miSsrJNK3p4ceUxj0Td3z3ErFycIVtCsNugdpwxSv3wyOaIayDA9WLxfLmVLzdS8Y9M8ydAqHsHcm406SjDhsr/2Rw4P3+muzbmoe9qNgbuz9XBfHF6hcv9DvPWcwJHi/R3CBva/CupW0c+0nov45Q3p3rfB+FXcPSAHLMdjgO/3W/qlNuboX4Dg5+dz0IbbBBlq8SAnB2DJpl7ZpQ8i5ErgxqXbQyYafqm2+Mxic1hP7XfAakWd5avQ7H2V6mBj8Te2wn3uWW6k6Vuomt4FZ8vxeefYvYjkeyHbZiRzdDC5Le/9Wvf+uwZZl2kaXq44/z9IzrjN4IHjvCINTgtfWeZbhJyrDeVnyDFKeKe5ZbqXqTO+pZ1SVJc8eIvIFRSrDWnLYaVnytFbv75O097tpONW5jNvoU4NPsu2TVBimOoO1ilSGPzRka4nm9d5zz3IrVWf6xmB2jjz/I7JfX6Qy7K7v/1OOfP9UvnUrqH16q84P5ch3ofLtVqRypK4jHJYj31sG37hnuZWqQ80zmJsjz1YNEaQ8yjBK339KjnwTs12kXqbts4XqPClHvhOVb1SRynG1vn9EjnzvGnzhnuVWqg71hrYVtMmS5wCR/YwileFgff85OfKlzmsOqqD2GdyQm+uD0P0/LVI5ztb3H54lTystnrzqnuVWqg6V6jVtmyXPdcozvEhlGNGQ29QMHtQ81ZoV1D7dVOcncuS7UhhuU6Ry7Kjvv6oB7Xide5ZbqTrUMDnUQwatYtIHajvEjGLtrzLoqFMRr2TJ08lgocEbFdhGMzXXWpMlzwz1rmqKVIZqbeZeZDAgJr21waPi0pbuWW6l7FB/0pP5QT2luxiso42mn0qMti1yGSapDAdnSE9Nyp9Yge1zSrYgrTrmVfT7hrUheonBxwajxZEuev/huG1Dbm6l6FBVOpS/MDitYEGggebYxd9Tm2uXqCx91asbFOzif7oSw4LruN1z6j1dJUw6GfTTUbSlBh+Ep2SKLHpvxfDkG4PT/JSFW5Icq8ZgFz29D2nucEo6NTE1xplq1QPsVMFt01knGWpj8LnfoE8zPyA3NzhUXNm5mKdw3NzK3bn7Kpbd0Yrj18NRWaUnvK+wOSBbPEC38rD/D1B22nUl0DjvAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE4OjA2OjM3KzAwOjAwpQBRdAAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxODowNjozNyswMDowMNRd6cgAAAJHelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAAEiJlZZLbtwwDIb3PgUvYEGkHpYWWcwjSIs2HqCd5A7d9/6ofjumZGCqOOORYHMo6jP5i5iB8Pl1/fHnL+lHrsNAZDvfnDO9O2vt8Eq4ofPzy/eZLvfTebNcbm/z/Tc5IefLmnLtfU/32+tmYboQG8nZukSjNVMoocsKY+16szlK69jxczQjzoeZTbD/cfQl4HgkYtg59hhj2VutY2fvaefo9He9ocu3lyem99PPJ78tSnRDUM5TloxV2coUwoPwuXh2HZfw4xqftRQWqRMzSYjilldmF+TRBoyylcDRTs5yk+8HrgLsYPiAq9sB9Pb38HSGU2afSEz0lvmzBHIAihgnKfFEzqSYUpRH8SM8vYkhuqloz+RQspk+zeC0wxqPcqUd19gDyzuw8SiZ2N2xOKg44Z3kOooTaSV3VHGCgh+pt+Cwqtw6EhKUWMXWc4zt1j2tC4r65ZoKanqopIKSfr2izrZYB6kct1QdKCct1FGm5/m6a+5ruz/f5mtt97ikNvXyQK72bi5DaX159BRqH+YyYm22XMZUW6qUkWqz5PKYa0fEWq7naEFBI2tammBihWPQwaJ8DEBM9eh6rCqgSsnAhEVBOX7spawM2DKx4jJ4YVFizksypOoE6cJUj8+SSxy+5hjiNUSJcawwSRUmiDEpsYAYFiUWEJdJlFhAjEmJBcSwKLHkdS9XVQTkRXaNAHmxKLKTpY7Vw617V4Nfk65vAJW1msLz9vej3A//AE6TqOLlGokJAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAADZelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRbZBLDsMgDESv0iVRwcJ2+FhVVtknB4hykxy+gJrm46zAg834zTyMOJlleq9mmLtldms30mgmvEj3DiwdN6ne7lN0Ll+bcQHQJ7befhxD3K8EiUIki0DIgdsjZsFgCWLvEVsPU85kGXLMORalhxgip9IjASUXpcyL+N56SOFUul+92zjt47SR007ub+XrJ6Gd3JxQknCdEU/V7Em5bHPdVSWgAlD8Cv8I9EhZI2tiDfzE+8M90yrYXei2LzWsfHd1e89WAAAAAElFTkSuQmCC) |
関連化合物
ヒル方式による化学式 C6H4N12O14
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |