モル質量 of Discodermolide (C33H55NO8) is 593.7917 g/mol
C33H55NO8 の重量とモルの間で変換します
の元素組成 C33H55NO8
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 33 | 66.7495 | 水素 | H | 1.00794 | 55 | 9.3361 | 窒素 | N | 14.0067 | 1 | 2.3589 | 酸素 | O | 15.9994 | 8 | 21.5556 |
モル質量を段階的に計算する |
---|
まず、C33H55NO8 内の各原子の数を計算します。
C: 33, H: 55, N: 1, O: 8
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C33H55NO8) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
33 * 12.0107 + 55 * 1.00794 + 1 * 14.0067 + 8 * 15.9994 =
593.7917 g/mol
|
化学構造 |
---|
![C33H55NO8 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAACeCAYAAACvprZXAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETI4T142QwAAAAZiS0dEAP8A/wD/oL2nkwAAHINJREFUGBntwQmc0HWBP+5nDu5LQEQUERXvRLxFJRUxM2NNi2zXldr/tmSbOf3KjeyXOh0WllmzlS1aW01bJmpqbGWKWh6Z4oGadviz1ExL8UhEAmHe/6mZV+OEJw4z3xk+z6MoNnTh6DAvNIRhWoVjwsbaheNDraIoit4qNIYzwqTw5vDTUB/OD9trFxaHekVRFL1V+EWo1S6cHQ4N54fttQuLQ72iKIreKAwJiz1HmBveHs4PPwoXhYvC46FeURRFbxXuDvXahXPDQeH8sL12YXGoVxRF0VuFD4YvhNeEfw5Xhdpwftheu7A41CuKoujNwmHho+HfwiCtwswwUrtwXKhRFEXRW4UB4e3hHeHYMElRFEVfFLYJT4aENeECRVEUfVEYGn4XEpaFdymKouirwq9Dwoqwn6Ioir4q3BoS/hy2VBRF0VeFa8Mz4bEwQFEURV8Vfhj+FO5SFEXRl4WLw1PhRkVRFH1Z+EFYGRYpiqLoyxr56rdZNpefKYqi6OPejqBZURRFHzcNz+J0RVEUfdwkLMNsRVEUfdwwPImpiqIoXoY3Yzsd3oVR1jYC/xfnYLbqeAoTFUVRvAxnYboOl2BLndXgerwFY3ECxqiGRzBAURTFy3AW3oChGIqF2FJnu2Ch6tkGv8SeqmMctlQURSWdhR/hG/gGHsCWOpuO+Z5fre5XjzlYgWANGjFQzxmMT6AFwXWYoCiKSjkL03W4BFvqbGv8xNpeh0t1r8NxN4JgJYLgNzhK96rBcXgQQdCC4CnMxQBFUVTCWZiuwyXYEtvjJBymzbdwOg7CiRiOOzFTm37Wr+2wEEHwa8zS5kAsQRBchV2sf3vhegTBzXgtJqIZQXAPZimKosftg3E6zMBQbIcazNemBkfgRByOf8BlOnwGH9D1RmIeViJ4AnMxQGe1mI1HEDyL+dhY19sczWhB8HvMQa02+2IEDsYdCIJF2FlRFJV0Aj7ihfXXZhIexThtBnj16jEHjyBYg2Zs4sWNRBOeRfAYGlDn1RuMuViG4BnMwzAdhuNhLEUDBmAOHkWwCk0YoSiKytgHo/AVL20sDtOmFouxt3U3A3ciCBZhsldmB1yGILgV06ybGszCfQiChZhobRNxDYJgMaZiFJqwGsFSNKBOURQ9bhz+Bdt5ZXbCJajRZrCXb3ssRBD8GrO8OjPxGwTBQmzp5dsL1yMIFuMAL20mfougBQswAVNwDYLgFuyvKF5cZpN9/E1OILVkjr/JaDJL0VO2wP0Y7MWNxDysRPAE5mKArjEIc7EMwXI0YqAXNh7NaEHwe8xBrZdvMBrxDILlaMRAzMR9CFqwABMUxfPLxeQmMsBf5SZST272N9mOLFD0lFpM0aYGw3TWD3PwCII1aMYm1o/N0YwWBA9gts4GYy6WIXgG8zDMuhuPZgTBPZiFwWjECgRPoxEDFEVnuZj8BznNX+UmUk9u9jfZjixQVMEofFSHd+JOBMEiTNY9DsTtCIIrsR/+GfcjaMECTNR1DsYdCIJF2BlboBlBcA9mKYoOuZiMJVeRbclNpJ48QS4iF5EfkQWKqjkNQfBLHKH71eM9eAxBEAQ/w77Wj3rMwaMIVqEJIzADdyEIfoN6RUEuJpuQKeS75CZST272N9mOLFBUzZ8QXIl+etZIXIYWrMJ7UWv9G4UmrEawFA0YgHdhDYIPKQpyMdnEX+Xz5G5ST272N9mOLPBXOZKcSAYqetrPEExTHcPRX/fbDdciCE7S5loEJyoKcjQZ7K8ynLyT1JB3+JuMJG8i/cnuZDo5VtHTfopgquIvavCPuBUbabMAwSxF0Sb/H1lC3u9lyfvJToqedgOCfVXHpzBWdVyA4C2Kok0+QELO9JLyb+QQRRX8DME+qqNWtVyI4M2Kok1OIiGf8aKyMZlL5pKpip52E4K9FC/kIgRHK4o2+Q8S8mlFb7IYwZ6q44s4RHV8F8FRiqJNPkhCzlD0Jjcj2EN1vAFbq45LEBypKNpkLgmZp+hNbkGwu+KFXIrgHxRFm3yIhHxK0ZvchmCKahiJWdhfdXwPwUxF0SYnk5BPKnqTJQh2VQ3bYAE+qDoWInijomjz6AdY+QCPnqLoTW5HMFnxQr6P4A2Kot1HEHxc0ZvcgWAXxQv5AYLDFUW7UxB8TNGb/BzBzqrhDDyLx1THDxG8XlG0OxXBRxW9yV0IdlId9RipOi5DcJiiaNeIoFHRm9yNYEfFC7kcwaGKot1HEZyq6E1+gWAH1dCE+ZiPyarhCgQzFEW7jyM4xfq1GYbpMBH9Pb9NsTeGKV7ILxFsrxpmYg7mYIJqWITgEEXR6mD8AcFHrF9n4HU6XIBJ1nYSfoiP4AqMVfzFWLxZh18j2FY1HIhmfBszsB3eqcMBmKl7XYlgumKDNgnfRRAEn7Z+nYHX6XABJulsDJagVpsaRT804EmsxLba3INgkp43GTdiHIZjNqbibB2OxUm611UIDlZskIaiESsQPI3FWIEVaECd9eMMXI3zcB4ewCSd7Y+vqZYxuAnLcT+21n2Oxr0IgksxEbtjDYKD9LyP4VidTcU3sRW2wvtwku71/xC8S7FBqcVs/AFBC5qxKQ7CMgTBzdhP1zsDb0B/9MeFmKSzybjQ8/siJuo+/fEBPIkgCFbgExhi/dkNP0YQ/AJvwBA0YgWCxzFMz/sCDtPZVNyGM3Emvo+TdK8bEaxAA+oUfVuYfjiXIgh+gt2xKb6CNQiexMMIWrAAE3SdM/A6HS7AJNRgBwxGP9yBHbXZCDV4B57GPXiP9W8G7kIQXIHj8RWsQfB7zEaNrjMaTViN4DE0oD9m42EELbgce6mGEzFXZ1Nxtg7H4iTdY6o2u2MpguAm7Kvoe8KksCBkGb+o5T7MxgA04E8IVqEJIzAIc7EMwXI0YqBX7z3YW4dPYjwOxxtxrjY74Hx8F+dhE9yOIFiGSzFU19sRP0AQ/BJH6GwPXI8guAn7eHX6owFPIliFJmyEg3ArguBGTFUtw3Ej3o+3oQFTcbYOx+IkDMX78H9Rr+vUajMIs3U2E/chaMECbKHo/cKI8JmwMiQ8FT70NQZiJu5FEFyBnaxtIi5EsOIOrgkzrT/H41TPb2vchuUIguAOTNM1RqMJqxE8hrno7/nVYDYeRrAGzdjEKzcT9yIIrsBO2ALNaEHwO8xGjWoajMMwC5tjJCbrMB7bYASG4BPYTNcYhLuxiRc2GI1YgeBpNGKAovcJtWF2+ENIWBOaw6Zh96f53hCeRnA7pntp09/OeSEh4bKwg65Vi1p82Ys7DJfhcQTBQ/g86qybfmjAkwhWYT429vIMQSP+jOAJzEV/L203/BhBcDcOxxA0YgWC5WjEIH3HvvgqRlhHYVCYF+q0mY6BXtoWaEYQ3INZit4jHBBuDwkJPw67hU3DV8OakIv5PuagzssU6sOc8GhIWBWawghd4404CSd4efbFxfgjgmdxAyZ4ZWbgLgTBFdjZutkWCxEEv8Thnt/GaMJqBEvRgH6YjYcRtGABJuhbtsJUfAw7eYXCFO3CVeHfrJuDcQeC4ArsrKi+cFRIeCDMDgNCQ/hTSFgVmsII6yiMCk1hdUhYGhpCnZ6xLb6JBxD8Bsd7aTviBwiCX+IIXWMG7kIQLMTWOjsewUp8BiNwEG5DENyIqfqmGkzHHl6mUKNVGBQeCPtqFbYMG1l39ZiDRxGsQhNGKKojnBj+N1wUzg3DwnFhQJgZ7g0JCQvDJF0k7BauCQkJZ4RB4ePhwvA/YVfdZyy+iF/hKVyEIdY2Gk1YjeAxNKBe1+qHBvwJwUo0YZg29WjCJGyBZgTB7zAbNfqw0M9zhH6eIwwM/bQKA8OSMEarcFxYpGuNQhNWI1iKBtQqelY4MCwItVqFfw2fDvXhqpCQcHuYbj0JM8MvwlbhnPB2rcLm4dYwWvcahtNxDx7Eftr0QwOeRLAK87Gx9Wsc5mMNgt9jNmowBI1YgeBpNGKQDUC4PIzRLizRKmwULg7fDt8N54S68NnwZa1CTRhr/dgN1yAIbsZ+ip4TPh6O0i4MCLdoFc4JS0NDqLOehVqtwl2eI5wWjtEzBuBk/B7fwgoEwUJsr3tNxWIEwV14BMEafA3jbEDC5WGMdmGJVmFe+CftwrwwO2wUHgib6B4zcR+CFjRjU0X3C/PCTO1CfbhdqzAqjNCNQl2403OEhjBHz6rFgwiW4g16Tg1m4xEsRQtuxFQboHB5+FQ4JZwS7tcqXBtGaRemhf/SKgzWvQajEc8ieAaNGKDoPuGo8DntwqHhK3pQuCmM0i58M0zV8+5C8I+qYRqCX6HGBipcHg4OU8KUcLdW4eowRrtwUPiCnvUhBEHwekX3CTXh3HB++GK4MmyuB4XDw+XhX8NnwzdUw48RHKga9kBwsw1YuDyM0S4s0SqcFo7XLnwxHK1nHYYWBKuwu6L7heFhnIoIm4Yjwu6q4xoE01TDnggW24CFS8Jo7cL1WoUh4RvhorAwzAs1etbuWI7gjxivKCrqWgQHqIa9ENykeEGhRnVMxKMI7sdARVFR1yHYXzXsjeBGRW8xHA8i+JWiqLDrEeynGvZFcIOiN7kXwW2K4i/CcWFOmBPGqYYbEOyrGqYi+KmiN/k5gusVxV+EM8P8MD9spxp+hmAf1bAfgusVvcliBFcoigq7EcHeqmF/BNcpepNrEFyiKP4ijAqbh+Gq4yYEe6mGaQiuUfQmlyP4tqL4i/DB8GC4QXXcjGAP1fBaBD9R9CaXIjhbUVTYLQh2Vw0HIvixojf5DoIPK4oKuxXBbqrhIARXK3qTryI4VlG0m4ib8VbVcRuCKaphOoIrFb3J6ViNaYqi3UDsgTGqYwmCXVXDIQgWKXqT92AZtlcUFXYHgl1UwwwEVyh6k5l4AqMVxXP8M2pVx50IXqMaDsbj+K6iN9kbT6BW0aXejf11OB0TrW0HXICFOBtDVcO/o0Z1/BzBzqqhP6ZhBgZhOHbSYSy2UlTNJDyh6HKn4wgdzsOOOuuH27GjNntimOL53IVgJz1vMK7DaWjAV7AnztXhGJysqJpReEh1jEEjvow3afNBHUbh3/QCp+NkTMd0XIkddbYTLlE9/4Rz0ag6liLYX887HqfqbE+cq8MxOFlRNbW4TTX0x604ApvjJAzBbTpMxCV6gdNxNt6D9+Bm7KizvfAta6vBZrrfOMxHC4JgEXbWc7bFpQha8CY97yy8UWd74re4CBfhRpysqJL++Dz+gFP0vEPwFWtbgkEYhO1xiV7gdByhw3nYUWcjcSfqdHYsfqz7DMTJWIbgz/gd/oRgFc7EcN1nI3wWKxGswLdxF27FdD3nVLxdZ3viXB2OwcmKqpiBuxC0ILgCO+t+/bR5Gz5mbUvxP/gfXIxL9AKn4wgdzsOOOAgn4URt3ovLMRdfwwQ8iAO0GY3h1p+ZuBdBsBDbaDMKTViNYCkaUGf9qcVs/BHBGjRjU23qcBaewI14D+p0r9fgZxilzZbYE+fqcAxO1mYnvEbREyZjEYLgLlyNJxCsxGcwXPe5BtMwFQus7TYdJuISvcBYDNNhAgZgIDZHkw6bYF9siqlo0uHrOE3X2x0/QRDcjdd7flNwDYLgFuyv6x2C2xEEV2GK5/d63I0VuOWdfDoM0H0OxXdwIRowCSfoMA2zsCmOQhMmKLrLaDRhNYLHMBf9tRmFJqxGsBQNqLV+1GOANm/DrajDj/AfmIYTUIvbdJiIS7R5C07GKL3MEfiUl7YbHsRQbbZBvVdnHOZjNYKlaECdlzYT9yFowQJs4dXbFgsQBPdjtpc2Et/bhOV/YkVYHj4XRqiWvXEJ+ivWq9C/gXfhSQSr8HmM9Px2wzUIgpuxn673aZymTQ1+gqnoh7fgfTgUtXizDkPxOtRhEqbjbXqR1+NwfNVLq8U22gzEb3CAddMfDfgTglVowgivzGA0YgWCp9GIAV65jTAPf0awDI0Y6BX4MGe18PvwTHg6/DZ8O0zQ8/qhDu/AXor1JswId63hkRE8hSuws5dnJu5D0IIF2MKrN1Kb8ViKCdrUe+XG41vYUS9Sh9dgiFdmC5ymw2Qv30z8BkGwENt4dbZAM4LgHszy8tRiNv6IYA2aMdY6CjuFxeGZsCwk/C4sDJP1nHE4GadikKLLhclhUUhI+PlXOdgrNxiNWIHgaTRigHVzFK7RYTqGWDf9sC/2w7/bwIzDgxjuxe2OnyAI7sJhutbBuANBsAg7e2GH4HYEwVXYVRcI/cKXwvLwdEhI+GPYRtGnhNGhKawOCY+FhlDv1dkCzQiCe/BGL984bWrxHYzVNQ7FcehnAzRUm37YVWfjMB+rESxFA+qsH/WYg0cRrEITRuiwLRYgCO7BLOtBeHN4JjwdEr6vVdgjXBAuCl8Nm2oVvqNd2Cj8l6IywqBwSDg0DNcqvD88GRJWhc+FkbrWdNyJILgCO3lxm+EPGKJYLwbhX7UZgYuwDMGfMQ/DdY9RaMJqBEtxNubjzwiWoREDrEdhbLgvPBa2CsPCLWGsVuGA8COtwhLtwsZhkaISwsbhutAQ3h1+GrYKzSHhirCz9acec7AUwSo0YbjOJumwmaJbfBVBsBDb6Bm74zoEQbAa/4VNdJNQE6ZpFWaEz3mOsDgMCr8Kh4ZDw5vDIkUlhMZwnHbh8PClsHk4TPcZhSasRvAQ/gt1qMGHUK/oVg8haNbzavAJPIzf4QA9KBwZPuk5wjVhdLg3HB+ODx8IixSVEL4TdtEubBqu0nN2x7UIgv+j6DGLEByi6CRsFRZpF4aFJVqFJdqFjcMiRSWEs8NB2oWdwwV6Vg0WI7hd0WOuRDBddWyK/iognBIWhA+GReEIrcIS7cLGYZGiEsJrw8IwKPQL3wxH63nvRnC2osdcheBg1XE8NlMRYbOwTxihXdhau1AXtlRURjgynB8WhGNVw78j+JKix1yN4CBF0YeE08O8UKcaTkDwBUWP+QmC1yqKPiQ8GxLqVcN7Efynosdcg2Ca6vgR3q4oXoWwOiTUqYYTETQpesy1CA5QHeMxQlG8CmFNSKhVDQ0IPq/oMdch2F9R9CEhIarj/yA4S9Fjrkewn2oYi3l4p6J4FUJCVMf7EXxW0WNuQLCvatgYc3GMolhHoSYktKiODyA4U9FjfoZgH0XRR4TakLBGdZyE4DOKHnMjgr1VwzjsgT1QqyjWQagLCatVx38g+LSix9yEYC/VMAc342b0VxTrYA/69eeB/vxGdcxFME/RYxYj2FNR9B39EaxUHR9C8ClFj7kFwe6Kou8YgODPquNkBJ9U9JhbEeymGi7DvbgXhyqKdTMQwQrV8WEEpyt6zG0IpqiG8dgaW2MjRbFuBiNYrjo+guDjim6zHz6lwxIEu6qG9+BHuBSnYCecqcPrcaKieHFDEDytOk5B8DEbiFpsi2G63wSchxYEh2hzN4I99Lxp+CHqtXkNpuDrOhyNUxXFC6vFuxAsUx2nIvioDcCeuBfBSsxGjfVvMOZiGYLlmIdheCtaELxJz2vEsTqbgh/jGByDz+JURfH8DsBiBMHTqmMegnn6sPH4H7QgWIMguBqTrR81mIX7EbRgASZiJ1yGILgfdXreJzFLZ1PwY7wVb8WZOFVRdDYezWhB8BCWYw2+gIF61uZ4AsEV+qDBmIunEKxEE0bh7fgDgjVoxhhdZ29cjyBYjAMwCvOwEsHj+BiGqoaj8WWdTcHXdTgapyqKNkPQiBUIlmMehuJGBMH/wz/ofoNwCp5GsAZT9CE1mIXfIggWYivsgC202QjzsBLB42hAvXU3Hs1oQfAg5mAA5uARBM9iPjZRLbX4Ji7EZ3EWpuDrOhyNUzEGH8YXsJFigxJqP8Pb8BCCFjRjPF6DyxEETyMIrsRrdI+Z+C2C4H8xTZux+JRebi9chyC4GdMwEvOwEgt0th1+gCD4BQ7zygxGI55BsBzzMAwz8HMEwSLsotpGYkvUoR4jdBiIodqMwaexqWKDEfYJN6xm9SB+jZuwH0ahCc8ieBxzMRCz8QiCZ9GEEdaPPXEtguAWvNba6rXZGK/Ti2yO+ViD4PeYg/54L5YiWI2zUWdtM3EvgmAhJnpxNZiF+xG0YAEmYnv8L4LgV5ilb5mIT2FrRZ8XtgoLQkLC/d/nzeiPBjyB4FnMxxidjUITViNYigbU6RqbYT7WIHgIc1DnxR2LM7UKdWGgihqMuViG4BnMwzDMwB0Igisx2YvrjwY8heAZzMNQa9sLixEEN2AfjEITnkXwOOZigL5lPE7ElzBJ0WeFIaExrAgJy8O8MDT8w7Z8D0HwA+zgxU3BTxAEt+AA624Q5uIpBCvRhOFeofCu8E0VU4NZuA9BsBBbYTssQBD8GrO8MpuhGS0IfofZqNHhYAQPYg4GYA4eRfAs5mMTfddwDFX0SaEmzA4Ph4SWsCBsGXYI3w+5m/tquBNv9MrMxG8RtGABJnj5ajALv0UQLMTW1lH4RthVq7BveJ8eNhQ3Ighuwn4YiXlYieAJzMUA625v/AxBcDUm6/CPGIwZ+DmC4Arsoih6sTAsPBQSbgr7hTHhy2F1SFgaTgj11s1gNOIZBMvRiIFe3J64FkFwC16ri4TacGP4Z63CxmE7r9LumKDDgRjp+c3Av2MvXIrfYw76Yw4eQbAGzdhE16jFbPwRwRo0Ywx2wP8iCH6FWYqiFwrDw2fCReG/w9bhLeFtoX9oCE+EhGfD/DBG1xiPZgTBPZhlbZthPtYgeAhzUKcLhc3Cf4carcL88Fmtwo7hHWFm6KdV2DeM1i4cGvr7O404Uodm7GJtX8R/4g04G3tgCGbgTgTBlZhs/RiJJjyLYDVaEDyGE9FPUfRS4bvhjVqF7cOtYWA4OPw6JCR8P+xg/TgYdyAIFmFnDMZcPIVgJZow3HoWdgsPh43CMeGScER4f7g81IVzwl7ahSvDaH+nEUfq0IxddLYxlljbuxAEv8JM3WN73IagBd/AGEXRi4WB4VbPEc4OB4X9Q0v4ZXij9a8eJ+JxBGuwCkELzseWukl4fThGq3BrGKZd+EJ4Qzgn7KVduDKM9nca8VNchItwP3bR2W5YYG3D8QvMxQDdbyqmKIo+IGwSrvYc4fTwJq3CEaFe9xqF+QiC32KaHhJqwl2eI7w7vDecE64MF4YLwyNhtL/TiCN1aMYuOhuPaz2/WkVRvGqhJtwVBmoXLgvb6nn/gitQr4eFn4c67cJHw1vDOWEv7cKVYbS/04gjdWjGLhiGf8L22vwIszEc+2CQoii6VDgufC/MDl8Kn1cNR+NqFRA+Hk4NA8Ou4ZYwNJwT9tIuXBlG+ztHYLIOs7EZXosJ+G9thuBD+AYaMUJRFF0uTAxHhl1Vx4dxowoIteH48K3wubClVuG4MFG78IEwxCswEP+pKIoN3Vdwgz5sI3wUYxRFsaG7AEv0YbNxGuYqimJDdxnuURRFsQG4Hg9iuKIoij7udjyO7RRFUfRhtfgNVuNARVEUfdhYPIzgXxRFUfRhu2E5go8riqLow45CEHxNURRFH3YyguBCRVEUfdi5CIIfKoqi6MMuQBBcqyiKog9bhCD4uaIoij5sGv4VJ+BtiqIo+rBaHIWTcKA2x+rsWEVRFH3A1/EJHIAzsQWW6GyJoiiKXm5T3GRtS3S2RFEURS+3J86ztrtxIS7EhbhTURRFLzce11nbEp0tURRF0QcsxLsxDodgMJbobIk2k/FujFQURdELDcR78UW8H0PxPp29T5vXYlucoiiKoo8bjq/hQEVRFH3clhiMzyqKoujjjsIHMUEF/f9vhwRhpnO5NgAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxNzo1MDo1NiswMDowMJ4hWncAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTc6NTA6NTYrMDA6MDDvfOLLAAADlnpUWHRNT0wgcmRraXQgMjAyMy4wOS4zAABIiX1WS27kRgzd+xR1gRaKn2KRiyzG9sxgEEwbSJzcIfvcH+GrlqVuDxFZImT6ib/HIv3UcP3x+vs//7bj4tenp9b6/9wR0f6W3vvTz4aX9vz1+49re3n/8vyheXn76/r+Z1PG3fHziP3y/vbzQ0Ptremm4dOoXWQbY7LO1re+rvNTbi9tbN5JbLYLb06i+cmvQEng3HqYd18WLWxEAdQb0MMyzMvYuq23X4Ejgb5JhJIu1zx8SgG0TCY2C/Why7Vzn70AzmVRuw3v7UKbpMWogJ7A2GYPcmuXDovURwGMlQzlpX0BM5moYqS+I1265d9DOpeuiW4VZ3YbjTZzU6+YIV4cDu686hzKs1d1JLlZzO4RarJlTlqWh0BNWhQdAWBaNPMKCGpkY6HwAYvh7qVruwFZnQLJJDCqpiBQQ1kVG6pwPUafJdAz6wSqzCzp2DSBVroGNX0zkRBHDEQcWnU4mEnqzGhk/dK3TY2qxZluJtnm5AxiEgmVQN5NzuECn2lycNU/DG6yE2MST4VNlrwrJMjJ5uYp7nAaM0LKIwt2LopelAw5bYqRlN5tt+nU8/Sjf7l3tQo6s+4I1IdlA+cbT2MtI/XdvyebsqAmLmWhYodGR4PkIZ8JpYomWTRlG8/oecIQa09wCcV0W1AKRoUiWLTqJllE5bG0rJGjVJghVf4i7XpDdl5dki09uLSp8J5jxiIWpVnRWY/MsXt3Suwq1CCl0uhiKo3OuU8ajcFcNb7MD6uOCYKaptVyMojvVoM0Ozo7Ia3mdxV0MZUz0S1y8sCq5FGuxogupogw49PaMus8Z1VWpf2kYDrdJqiwjqqtFfMOq8iHrK6SXEWzivXr9fVh2d3W3/Pb9fVcf4znXHJQyLnKcvphT337/hudawvKcS4nyscW5vjQlnKe64by8UeML2WcC4Tw9EdnhBAhTg1BQ5j6D+aId/2pEeSTOejdXKcljugJ4UN8SoBs1x85EJKA8E8R+q4/MsGAh+D+aJP7rj++ZVQb4iRgMZDK8yuQkIKPLBhZpMB4u4+Ex663u7FGEHn2H5Fz1/vdqCIIzKGHmOOml/vxQ+02Wx6QAl6wVo9cBLmkkBMDRqA5chHdrR2MCLJIIZ8YEdv1ByN5vhlCjiwEWWDJHVzkaWUIvT+Uq8J6NjSt1tMjcEXgKQ4FztH9qcHvH/9w5vvTf3M9Ak3cTS/LAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAH+elRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRZZNNblRBDISvwjKRepr2v51RJKTHghVZsQLOwSaHp9wdhAKbN2++cVWX3Z7r+fp4PV8/vl+fvvx8uB7P58v18PXx+aW/vcN/AVR4vhf+U/LH9+DrvBGsj/F/Kvx4fXh9uBHNlWXjJlOTI8f9VjPSi8aNZ0hWAeXUIo1dVUaNYlJmxq4y0jdCADQZgI8sAr/dVsuYm9nMqFXNbIWLvjEqGWtWseibvYfEoBmaZm9k8ZDJAHLcvapL1tJwEJ2W4rYjuKQcVCt5xwQiIDgkLdsJGNJW0qw0p60MZz1laD87VFQhyjbzEu5Q4iRHF8Q7Jkt0f2t6IIW2Dm9shyFMnyesBicA9ojtRCS0iUhJdn9EXEflZLtlOPVUcBra0wZmKzdQCRo2FQCNQC1U7YInwjfAvPogr4QFWhC1agtFhHHH7GUtaUW6HsCc3ZIDHAkv9m5IOZDnjqugRGoQWZ21AZ2LxoQwo22z+p4wIiHRPIRkb0yCeDtrJW4OszaLHlXMVY5bagIj3yTLYW1zeb/cc0qV7v1MNiS9F5rDUmxV8oqu0eWW+3TUVNfEKjp7l9z3/zh+fXsi9C2DbJIN7ukNYQQe4lP81+cnRBw+feB/QjQY64GnYcMH10TrgjQ5FAtOr78BqpnObGICRuAAAAAASUVORK5CYII=) |
関連化合物
ヒル方式による化学式 C33H55NO8
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |