モル質量 of Ferricyanide ([Fe(CN)6]3{-}) is 635.8487 g/mol
[Fe(CN)6]3{-} の重量とモルの間で変換します
の元素組成 [Fe(CN)6]3{-}
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
鉄 | Fe | 55.845 | 3 | 26.3482 | 炭素 | C | 12.0107 | 18 | 34.0006 | 窒素 | N | 14.0067 | 18 | 39.6510 |
モル質量を段階的に計算する |
---|
まず、[Fe(CN)6]3{-} 内の各原子の数を計算します。
Fe: 3, C: 18, N: 18
次に、周期表の各元素の原子量を調べます。
Fe: 55.845, C: 12.0107, N: 14.0067
次に、原子数と原子量の積の合計を計算します。
モル質量 ([Fe(CN)6]3{-}) = ∑ Counti * Weighti =
Count(Fe) * Weight(Fe) + Count(C) * Weight(C) + Count(N) * Weight(N) =
3 * 55.845 + 18 * 12.0107 + 18 * 14.0067 =
635.8487 g/mol
|
化学構造 |
---|
![[Fe(CN)6]3{-} - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAD0CAYAAAAGyZprAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETEql8oUyAAAAAZiS0dEAP8A/wD/oL2nkwAAJn5JREFUeNrtnXfcHFXVx78ppFFSqAIBQicBBQRFOhhRSgQLVQVExW5siL4K5rWCoi8BFVEsoCJEUCEUNSAtVBFFpUvvCQESWhKSnPePOZPn7mT3eWZmZ7bM/r6fz34I+8yZnT333t/emXvuOSBKwLYAuz94nZTSbo/A5jT5sWvb/7SgHe8Bm5DS7neB3Rbyo+iWDr8NmAWvpWBvTGG3b2BznvzYte1/XqL9L09pd31gs438KLpV8AzsVrAhEryeFDwDe5cET/SS4BnYpyR4PSt4T4CNluCJqgve9WDz/N8LwNaT4PWU4F0W/PtUCZ6ouuBdAvaF4P9nSPB6SvAm++zOwJaAbS/BE1UXvJFgDwbv7SfB6xnBexPYB4P/v6Xxs1wJnqiE4EH00Hr5ew+BrSzB6xnBG+xCF7/3cQmeqLjgAdifg/e/KcHrFcEDF75l/t78+s9yJXiiWoK3Ndir/v4isIkSvF4RPAD7df/tK8ETlRI8APte8LfrwAZJ8HpG8NYGey742/4SPFF1wVsV7LHg7++X4PWK4AHYJ4O//Tda0JLgicoKHoAdGvx9DtgYCV7PCN4QsNuCv58gwRMVFzxIBKSeIsHrFcEDsB19f7WBvQy2gQRPVF3wNgN7xY9Z7BlWJHg9IXgA9tPgmF9L8ETFBQ/AvhEcd5EEr6cEb3WwZ/yYZWBvkOCJqgveSLAHgmO/K8HrFcEDsA8Fx10jwRMVFzwAmxIc+7IEr6cEbzDYjQ3aX4Inqih4AHZxnXRCErzKC97yvvJqnfaX4InKCt4GYC9mFzx7DdhQ+btl7To08nmRggeeEl6CJ3pF8ADsy9kEz77m29MOlb9b1q6Hus+/VrDgrQb2uARP9JLgDQO7K4PgfdiP+5v83bJ2vcl9fmyxggdg75XgiW4dGKPBDvbXrhnstgzsdhrg2JFgc31w7CKfl96mu7qv54GNGuDYnYJ2XD3l+QeBHRTYjZbPhVjxttbALpAvSvf1he7r/5UvhChuYL02SiOV6ti1fLfGErBN5LvS2mSC+3gh2DopbbaO2lII0WiQHOmziJkZbH6erkCMaKJdpruPf5bBZqbbHCn/CVF/kIzz8JRlYFtlmEksc7tx8mHhbTIG7AUXr9eltNnckwO8DLaGfChE48HyYx9cP8pg8xe3OU7+K7w94opzf85gc4bbnCH/CZFudvBS+tnB8qQDj4GtJB8W1hZDwR52376tvFm6ENUZNIOiwWKfymBziQ+yL2f4jDvc5nD5vLC2O8J9endtKv5+bb6S4znsp7yPDJLPRbcPmo19xvZKtKqayubNPmieAhuR0ibOvHGrfF5Y293sPv1gyuOHBUW3905pE6+0L436ihDdP3D+4INgWgabf7jNUSmPH+4CaWC7yedNt9nuQQr+kSltjnabf2WYEU5zm9/L50KDR4NHP1JC9Njt0Ztz3B5tKp/nbqs8gcaT9RhCiL7O3cwD8EsyfM5ZbnOafJ67rU53H/40g82lWmgSoq+DtyjEwSb58S+l37guAv+NDQKNU24Nsy0USiTEip28mSDWH2ew+ZPbHC+fZ26jL7rvLs9gc6aCxYVYsZO3aJuSvTWYPQyT31O3z0pgj7jv9skwC39J2wGFqN/ZT2tiI/oJGWxud5v3yOepfRYn4fx3huesJ7rNxRk+J074MF0+F1UfVHlWAPf2AfJ0hhXAD7jN3+Xz1G1zi/vsmJTHDwd70m32SmkTrqQrpZfoiYH1++zJJO02t3l/jsG4h3w+oL/2zPGjcozb3J5hRhgnbb1QPhe9Mrh2yxGIfGSO262vus0f5fMBfXWR++rEDDb/dJv3pTx+RBBovKt8LnppgKUsCLP8+JXAHnWbt6S0WdMXO5ZF9TJEAz9t5reYC8HWTmmzj7fF4+kXhlR4SfTuIDs8CEQenNLmf9zmsgyf8xO3+YF83tBHP3QfnZnB5nK3+VLK4weB3ek2h8nnotcGWRiIvF9Km7FBIPLElDZhUKwCkYvzacbgbtvf2/pRBRqLXh1sx/kgmJVjNvKTDDaXZZuN9FQbxLPmSzPY/DT7rNmucJvPy+eiVwfbamDzfSBsm9Imz/Omt2R/3tQT/g+fi05OaZPjuaht48cviILPhejdQXeqD7hfZLBpwYpiT/i+RSvf9ku3+T/5XPT6oNvIA5EXgb0mpc2eOWLG3h/ZzLtUPo+Zd2n5sY22tmoHC1E7KC7wQfT1DDY5dgUcNQsGLQP2ks/ZK/LFUbMi36TyYY7dK/YNt/mdXC5ENCh28UExD2zllDY59n1yAmDAxfI5M90XX8nQThn3J9sosLlus7NcLkTf4LjRB8ZHUh6fI7MH44AXgWVAL5cQ3BxYCrwMlJiBxj7qNreofwtROzgO9cFxT4ZA5By52zjTZzY/6mFnn+E+KDHHYE2g8SHq30LUDpAhYA/4ADkgpc24KL/ek7fCpJRBs2zhs5uX0s9uKkWOWe6kiZGP7YX0+etsirflQ1GQuRAiOUg+54PkyvQ2k0722cpZGT7oUrf5cg86+Sv+3TPUCeGsyGbSyRna8q/elp9Vvxai/iBZFex5HyjbpTSaACwBFgIp8+sx2Qf9U8CIHnLwMOAJ/+4pK8GxFvCKz4pTVoKz1waBxqPVr4VoPFi+74J3dgajP/ggnpbB5h9uc1QPOfdo/87/AtKubE9zmwy1fu0cb8PvqT8L0f9g2RDsVbDFYOunNNrdB+UcYGSJg7/bySryw30WbEDKQtm2rgeRLwHbWP1ZiAFZci7cPhv2yLLZ/2YfmCkLfee6vetm8tzGf8htMhTK3uNLUdstOVf9WIh07OQD7RlgVEqbI9zm7gwztjwP8LuVrAs1g4A73CZtoexR3mbmbSiESMkNPnA+lvL4ocAjbpOy0HfPBCLnCcXZ1335GJA2f93H3eZ6dV8hsnGwD557gZSByBzvNhkKfecJwu068gRb/8VtvpBhRniX27xb3VeIbAwB7vcB9PaUNmOAF9wmZaHvPNusuopxPrPLMovd2o9/0e3TcKD7/UGfbQshMvIZH0RXZbA5zW0yFPrOs5G+a8iTMOHnbpOlUPbVbvNpdVsh8rEq8LwPpB1T2uQJRN7bP+NpqhWIPJy+lei0KbHCQOO0+eu298+YDyjQWIgmOMUH068y2PzebTIU+uY2tzm6Qr57v3+n20m/cv01t8lSKPvXbvNddVchmmN9YLG/xqe02Y3sgchHus2/qU4g8j/9O6VNaz+CvkDjtIWy1wMWAa8CG6i7CtE85/kg/HYGm5vcJmWhb1YCHnWbyRXw2Vv8uzxOFGSdhg+7TZZC2Se5zW/VTYUohh18UD0LrJLS5nD6ApHThrX8j9tUoe7FZf5d0u5WGQTc6TZpC2WHgcZvVDcVojhm+8D6RMrjhwIPu03KQt+MpS8QeWIX+yoMNE5bfHx/99WjpA80/qTbXKfuKUSxvMsH1wNEMXppOM5tMhT65oduc2YX++on/h0yFMrmCrdJWyh7MHCf27xT3VOIYhkC/NcH2EEpbVYjCpUwIGWhbzbz2dFCYO0u9NOaREHUy4CUhbLZxo9fQBS8nYZ35PgBEkJkYKoPsmsy2JzqNhkKfXOx25zYhT76ql/7RRlsfuk2WQplX+s2n1K3FKIcVgWe84H2hpQ2GxEFIi8CUhb6Zi+6MxB5OPCkX/ueKW3WJgo0XkL6QOPX0xdovJq6pRDl8R0fbL/JYHOB22Qo9M0tbnNMF/nmA37NGQpl8w23yVIo+1y3OVndUYhyWY8oCDlLoOsuPkDnASkLffM+ui8Q+Xa/5vemPH4UMNdtdi7R/0KIJsgzw7jRbVIW+q4JRN6nC3zyVrIHGn/UbbIUys4zwxZCNEH8DOk50gciH+o295A+EPmLZN/h0S6+7df6xZTHh4HGaQtlr+yz5CzPUIUQBZB1lXAIUQiFASkLfTMG2K6LfLId6cNKprgvHiJ9/ro8q+RCiALIEwf2Obe5Uu7jr+6LtIWy88RBCiEKIk+kf5hfb7se9t1r6Qs0Tpu/Ls9OFyFEgeTZy/kzt7mvh/0W/1CclcEm615mIUTB5MnWsasfv4z0282qxLb+3bPkvMuTrUYIUQJ58rE9SO+WE7yevmI7acmTj1AIUQJ5Mu4eFczy1uohX60RzO4+mNImT8ZpIUSJ5KmpsIBsCTKrwPf9Oy/IYJOnpogQokTyVM06jOyFvruZsFD21JQ2earGCSFawEVE257Gpjw+T6HvbiZPoeyx7tOL1L2E6H7yFPruVq5GhbKF6Gl65ZZNhbKFEEBvPJRXoWwhBAAbEoW0LCYKwaga6xKF7SwBJqi5hRBxYO23Kvjd4rRRKpQthACqu3VKhbJFEhsLtnHwShmTZWsGNivLj11PvDn+4xX6Tp9AhbKrolMrJ3RqeEq70YHNWMCmgVnw+lDKE50V2ByiBul64vRH91ON9EcqlF0twTskoVMpS2raZwObafUE71mwFPsrJXgVI0xweWAFvs9BKH9dlQVvCdj2RQiegZ1djODZBLCjwcapwbqCOIX51RX4LtegQtndJGjjXCsmpBQ8A/sb2JBmBG+x/3cZ2F4FCN6JgRrPBpsK9ho1bseSp9B3J6JC2d0hcquDHQk2E2yRa8UJKQRvcfDvjzcjeKeBLfV/3ws2oknBOwjsz4kLXAJ2FdgnwdZTo3cccRnCX3fxd/gNKpTdqSK3no/9q1wLQhH7c6QZAwre2WDz/d/zwdbNK3jHgJ0X/P8JzQne8mPHupLPAHsxMS29w69hc3WGjiAuNN2t+d9UKLvzRG4Dv7ubHUyoDGwh2Cz/2wDrBjWCd0qkTcv//9xmBG8DsJeCC9qiecGrsRsFNgXsHLAFDcRvK3WSthIX+j6pC6/9ZFQouxNEbkIgcsuCMf6y38IeGYWMpD5fUvBGgj0UvLdfTsEDsK8H7/2lWMGrOceIQPyeryN+J4Htqs7TcvIU+u4EVCi7vSI3Cex4F7lwLL8UiNyqOc+dEDwAOyx47776j+DSCV5SPQ8rR/BqzjccbDLYdLCnEw57wN/fFWyQOlZLiAt9f7KLrvlTqFB2O0RuGtiddcLbzgE7uJiNCfUED8CuCd7/Wk7BA7BDg/efBBtTruDVnHuIi9t0sCcSjnw4EL/B6nClkafQdzsZjAplt1rk7k2MzWdc5KaADSv4MxsJ3rbB4sdCsC1zCh6AXR787QetE7yazxkciN+jCQfPDRy8kjpi4QIS71R4Rxdc7ztRoHErxuBjiTE4JxiDQ0u8hgaCBx5dEv/tmtq7wGyCt4Wrpvnqyo6tF7yGvy73JBw/r7xfl54lLvR9bRdc63WoUHZZd1lPJsbaQ61/xNSv4I1OXOP7cgoegH0z+PuNfV+wE7aW2fZ+fXfXeX5wNszeFxihzpubbsk2Emd76bZFlk5jRDRm7GwfQ+GYutvH2vZtGuv9CB6AvSf4+1Ngq+UVvJG+aJBQz0aCZ7tFNi13yMbBMrhf11evA14CZgJHEu0kENmIC32f28HX+Fu6N4ym3YwEpgDnAPNh2nV1wsRe34bxPDLSkrSCB2BXBsd8K6fgAdjbg2Me81QtdQTP1gB7NRFr04atPbYZ2Bdh3SvoK7xswMvAhcARaMtRWvIU+m4lKpSdndV8DFzoYyIeH8uiMWNfjMZQW0QuDlOb74sRa2YQvK2CLWoLfRKUR/AA7OLguK82ELxtwG5KBBq+AvbHaGaYXOltCeOJNsXP8kEbN+4SohxwU4G1NQb6Jd6q9Z0OvLbv0v1b4VrBWL/LmQksDMbBUuBWYBrQDpEb49rwR9cKC/bz3xRpSlrBA4/djY+b0YzgbRBsC3sB7NLGz/BsPNixPst7NbGPNk4isE4bGn2NoNEXNxA/JTdYkU7djF+VZAdlsXrQ3xclRC7u723Yz27j6iQNiBdGZ3vw8qYJm7SCNwrsweDYC3IKHoB9OaHAKRYtajIiLG4gfuu2oTOMG6AzHA9sojGznDjd0tQOuqZPU510VkXe4h/r/brRHU0bJhu2RnM6kFbwAOwdDXQqs+ANA7urTl6qlKu0y5MIzAzCXWJlv9WvZdM2dJIxwMFED25fDDqJAXf4dL/XkxvECTUfpDPi3KqWsLQZNnQhm03tM+tXXPiOBdZqg8iNdyGb1c+dXsrHSVkED8AuqaNTWQUPfPtXTsFbYeoZP6B8oUESgS3b0HnCVasFDcRvYg8OqsHA3e6Hd3XA9bzbr+Vev7ZeY0IDkXuZvqiEdiwYbtQgacAr+ZIG5Ba8TRLPBPMKHoCd37zg1ZwvuTpjnbE0zohA/J5PiN/9wHSgl5IbxEVxZnfAtVxP9YoODcQk/8G9NdEXw9CrNsQh1oSENcqM0mRIWFbBA19cLUTw1klkNykw8Hh5BpUzfdtKeMH3tzGJwBAXt+nAU4kO92AgflVObhAGIu/UxuvYkWqWlexP5O5K9Lln/Yd4CjC8DSIX73i6IzFGn/PV0SOLrWaYS/CGJzYlTItnV2P9lcFxtkpgV9JWrk7b3lJX/J5IdMRH/P3JwNAKDsC4sPV5bbyG86lu4fDBRKvi0/x2PexbzwQiN6yNInd367d12rBAbzJsbLBR+ezajg0B2xvsh3UyqDwCdqpHZg9uQwfd3UXu0UQH3auCA3JdolXtJf4cqdVsSLT6uJhoRbJq7JXoQ49639q9PX3bdvOx9UhizD3hY3HvgQvpVAob1/ovbIOjZ3o2zRP/eSO8eFfiV7DVGVQG+a3ed4CbKzrDA/iVD8ZT2vDZ3/PPPqeivh3qfec73pfaeffyOLx4d2JiMd0XLlvct21Ih1Q/tF+VmwdrwM8fFGVxsZPgjAvq3AL8DNivPc85Kstr3b8LgNEt/NxV6Vs82k7NUBjDfYz8jL5ntP464wLfvbBj6x8drZAXsxN+5OymOplKfuni145MJR26klU5rnK/fqaFn/lZ/8y/yv1NkzYCodUiFy9a/rJOxpabOuW2tsRc9k2xMR0Zq1QJ3u6+fKhFt+5DfCCaD1SRnQ6NMa0JS+u22jYNqxU1GXjYNGmi0dfUmEjNIPpCJQ5uwecdQm8HGuclzS6iLdqgE1WsXlhEPcpS6ND9hl3Hx9xvt7Tgs270z/qo3D4gHbpPPFV96s0q0gapNg+3I1NJh2aU6ArCQOQ3lfg5O/tnzCMqxShWJE0moDYk6ahJHlIvM8pUsKqPrwHTw0wFa0eMVYfmDOtovuk+mlHiZ/zOP+MbcncNHZrr0dYMxncnpYfrCPEb47Urz+lnmtuOTCWj6HvA+0KDZx9baszVBCJvXML5N6LagcZ5/NHfs+gjaW2oUDyON+zn8dVMz4+5lpqv1mmd+iAzkfe/rvj18srh2e6L75dw7v/zc/+yh/27eyByjUKt2hAF0XCBss0lHrpT/Eb0s1QdJBFoOSOIQjLOJtrAHXbAF4iyeBzRY421jc82ig5EXo2+GLFte8ynh7vAJe8unvW+93baUpFv+X7aW/sJQVOca5NOHg62P9jPfVdH4OgDLyfa0L5DGy4s3obzO6LnfGHHfI7eyKASc6V/788VeM7P+zmv6JGOHgfN35PoS8uAP9G2pAHsEI2xAy9PiNwzPib3z5Z4RGQRv6FgbwH7MSz6DwwOheZh2pepZBjRroN/ET3ParQBvKobrQ+g2EDkIcADfs79K+qzIcAe1E888bz3pc+0QeQaZGwZvDQac/ZjH4NDpUetb5hdieqR/jfRYebSviQCQ+nYFD+lMQi407/joQWc7zA/1z1UK9C4v9Ri4Q/2kDaNpenAY3V+sM/0PiuR64JbgnltFpkOTeJYOB/x7/W3As51k5/rwxUTuU5KHhte15OJ63qoxx7JVEb87mDFZ2sziFa2Vm7jdVUxucFIn1kbsEsT59mF7g807m9z/h1+V7JrG6/rTODpxHU9IJGrBmESgQ5a1u/UQixN8XX/Dhc0cY44zdfXuuy7h7GbjTbnd2pY1eslE9VkIzoycLNTS+1lZi2/5iXk26+5kdsupDuKoo/xPjODzirxqcB5sQIdujWHNenb4taNyQ1+4dd7ag7bU9325x38/QbanD+V9uwK0dZIkZo0m6+V3CAdW9MXiDwmg91qwS3X69Q/Kts/RJf9grcpvc7yX/AZRM8fO/kXfJZf2+cz2BznNn/pkO+wQfCYIYz3XOjfb2qbHjMovZkoXWQuIno2FUa/30Bbtvd0xTOa/Yjitz6Q8vihRHFoBuzbxututJDU7me8eF+7oc51XeTXNVbDVZQlMguIklJ2Ap24CjeIbAHfh/v13k3rA40n+ay901bx63ETKlEg2iQym3bgdQ0nitSfTnfFWcWBxh/K2RZHE5WNPN1vo3dMIXLT6NsdkgwGP5jOjAHc1L+vECJB2kj6vDOqbwB/zPg6sM55dvNrmpNjMO/JirsX4tcvqN0KNdFF8YHEcU8TBeLuQ+u3IQohSqC/vZJz6NvilmWv5NUNhKa/V71sKr/3v03L+J22IlpAeJJo/+46RKup7whmt58Ojn9vg+8skROi4sS3dM0kNwgF71HgvhSvYxLnmEBfoHHWlcUd/Va4Xq68D/h1XRO8N9pneDujymdC9Lz4NUpucDDRgk1/grdzzs9ek6guxvcK/k7v8OuareYVQjRiGxe/fyfEbz7wG+CgggWvLH7j1/W/alIhRBrqxaRd3aGCtw5RZt6D6Es+cDXdm3lGCNFm8fs88K6SBG8S8C2iZ253EcXjXefvpQn/+UJiRnoj0barkHFEWacbvcapmYUQjShC8IYCP2TFmiDhaxHwsQHOswXRs8aPA78lWgh5ym/RY/an/xXkKWpSIUSZgndecI7FRNukvumvK6ndyndAhvN+wu1uCN7b0IWz0WtDNakQIo3gfYcoxXt/rwkJ+6OpLVqzXZ3POCE45l7S7xBZhb7njnm3hY1F+1OFEHUEL83rnYFtWPTHgKMafMYwandGpE2LPoy+NE55chruQbQx/xWi3RxCCAlebsHbitp4v/52ePwoOPZLwfubERU+r5eq631+/CPk2zd8UvCZJ6uphRCh4B1BtFe1v9eqdQTJgNuIFhwavc4Kjv1VcI73Ei12zCdazT2QKOD4+/Rl/H1/zu82EbjfXxPV1EKIUPCyLlocR/Z9uEaUFilkPxel5HHPkD4XnxBClCp4Xw1snyDK2Jzm9eM65xpEtOBxiM/6dkMJAYQQHSR4nw1sT5ErhRBVFrxDAtvfy5VCiCoL3vjAdh7tqw0ihBClCx5Ee2X7SwwqhBCVEby30LcbYhFRctB6MXMbEy1yvFsuF0K0ivWo3W/arOBBVBcjDCe5DzgbOAO4mCgvXyyK/0zYboiKTAshCmYYUV68BcClBQsewEeJdlv0F383hyiZZ5h2/jKiUorTUCUvIUQBvBt4MBCe39G3wHAM8HV/jW/yc8YQ7af9mYvqLGAGUdaUt7JiXN0Iv5b4uh7ULa8QIi9bAX8KBOVOF55OYw/gH8F1Xk39oj5CCLEC44hKOS6hL2RkKlGN205lMHAkffVplxIVH1pbzSmEqMdKwLHAXPqScZ5JVOe1WxhDlOUkThzwHHA8MFzNK4SImQz8J7gtnAVs3cXfZ3OiJANh4tCD1cxC9DabVVwY6gn5JDW7EL1F8tbvBaLQjire+q1E9AzyuS6+VRdC5KCXH+5342KMECInCt+I6JZwGyFEDtb3WVy8PetRn+UN6nG/TKG2ONBMoj27QoguZBTRc7mXfUBrC9aKhFvm4gQG08lf1lEI0WIGEa20PkRfAesZqMh0f6xLtJCx1H32OFFM4mC5RojO5fXA7OA27VbS13EVsANR2cfYf3+juaQIQogSeE1ihvKEZihNz5AfTsyQN5BrhGgv8TOo+fTFmE0HVpNrmmZlomeer7hvX/T/Vyp6IdrAFGrrsc4ENpFbCmc80Sp37OdHiFa5hRAtYEvg8mAA3gXsK7eUzl7A7YHf/wq8Vm4RvcwuJZ473inwKrU7BYbK7S0j3qnyNLU7Vdbq0j4lRC62IMrSa8D+BZ97KLVpm14lWqBYU25vG2OJ9iIvojYN1bCCP+cAP/+Vmk2KTmAccHpi1nV4ged/M/Cv4DbqCmAbub2jfuguCdrnnoJ/8A73PhX/0J3ufU6IttzazEnc2hQ169qUKBQirOSlfG6dy2TgDmrTUE0scDYZPsp4Vo8yRCvZm/IeXsehEHHapjgUQhl7O584DdXz1IYIjS7o/FsSVWmL+93dwH5yuyiLTRKzriLDE+IZ45P0BbueA6wjt3cdq1ObhuoZik1DNQX4b2I2uZXcLoqi7ADUNwA3Bh34ZmAnub3r2Q64NmjX24DdC55NKuBcFMagOrOuGTRffzVmPWrTNj2G0jZVkSnU1vWdCUwo6NzxlsJ4NjkXJTUVOdgRuCHopLcAbyro3KOIQhhe8HO/TBTisIrcXllGNmjzotJQbQ9cF/TXvwO7ye0i66zr8QJnXYOA7wYzxvjXfiO5vWf711zgRxSX5GEKfWnB1L/EgL/AC0r6BT6Cvuct8S+w0jb1Lrt6H4j7w3zvI2XcQbykOwiR/FVMpvou6hnL6olb46XAuUQPnUVvMwQ4i76UXkZUc6SolXml9hc1bAdcQzmraMOALyRmddf6LY0QydvcaxOzvS9Q3Da1NwI3oSiAnqXsOKnJRJWwwjip3eV2MQBvorzdNb1cnrNnKTsSPkwgoEh4kZe9qd0/fSXF7Z9eBe3k6QkmA/9JzLomFXTuZOaMZyknc4boHeIMOfFe7aIz5GyWmE3ei/ZqV4LNWTGbxQEF3yaUlUBAiLITB7wZ+De12Xi2ltu7DhsDdhLcchXl5CsrM4GAEEnKTByQyLd44tVgZ4KtIbd3vtANAfsI2FwwA1sMO5wMFNV4ZSYQEGIgykwcsAasezIsXexjZ66PJW1T61Cx2xPsn95YBnYV2OsKOrkqWIlOoeTEAbYl2OXBOLoL7G1ye+cI3Xiwc4IGegSsqFlX2QkEVDe29yiqzUtOHGBTwO4PxtVMsI3VfO0TulFg08Be8QZ5yf+/qFlXKxII3Iwy1/YSQ7zNy04cUNC2RRsGNhVsvo+xRWDTwZSGqoVCNwjsYLCHvRGWgc0AK6oyfNkJBI4g2uYTzxj3UZv2DPtQu9XrCIrb6lVi4gB7jS9kLPUx9wTYsWC6QylZ7HYAuz6YZv8NrKgydmUnECjxl1h0Ea1MPVZw4gDbAWx2MP5uLXD8icDR6yZ+YR4v+BemzAQCStIo6s30y3w2XGLigIZ3WBuqWYt7hrCgpGcIZSYQUBpuMRBlr/6XmDig4TP0kWrWfA4tc5VIhVZEJ9GKAlElJQ6w9T1KYpmP00ejKAlTGqqUDtwK7E+B0N0J9tYCZ4yfg6/MCmZd30Ol9ERnUOYOntHe1xdH595hVjQWrKDdRyvEwV5dYBxsJYVunN+uLnGHzfPb2aLiig4Auyc699I5MPpCor22RaBiyaIoyt6jvTkMvRCemOPj7J5obBQyxgb77O5pP/dSn/0pDVXgpJV8ASLeDvZqsXv5bHOwS4JfngIbuPSsFqJ3KTkLj70Z7N/BuLgCrKDEAfFedlvo534O7HiwXk9DZZMTTp9VgtMXJZxeZAKBZN4yJRAQRVNinkUb2oLJxsySJhtdJXSb+VJ27Ih7o6XuUqfVaxV08ZtSXmZaIRpRL5P2xILGTKPHSQU9krHJYP9JTGwm9UCb2Sq+dB1PdV/w/y9oqqsEAqLSNAp1KmjRzbYqL3GAreQi+nxfJiObHt2JVVPsVgJ7IJh1/aS4WVfLEwicQ3HVpYTIyhqUGlZVZkiYreVjP95E8ECkDdUUva+A3QT2xoLO180JBIRolu2prXj2d2C3gsZWyYkDbFuwa8C+XOVb2qKeCbQ6gcBjqKan6FymAA/SlYkDTKFbAziomxMICFEWShxQMaErMYGADQI7FHYObw/OBzaQ30WXsYH3Xe/HY6+N+rYpcUCXCF3JCQRsO3+WYDDnHxSbQECIdvEG4EY4/+8+bm4GKztxQFUjFmy0K3382jSl3TqBTQrnl7patDbYT4MZ49NgH4RpSmooKsK0wVGfrolJ/WlxW72WR0dkTBxgOwU6cGCGz9s7sBvdQkfa1oEIme+WSLG0bG8LbM7v57gyEwg0igcarQEiKjpBWTkR//piyfGvV/cf/2rnJ/TjsJSfc0Ng08r6uSsInoEd17zglZ5AYDLYHT0Y8S0EdXY43deCHU5rpxC8p9IFIHeW4L0ENiGf4LUlgcD+GgCiR4WvXuKAbQo6d4rEASsInoH9oFsEb37w74uyC56N8y0s8fuXR7UxC7nOsSUnEBCiW0WvUeKAgjL91K1vO66O4M0PZoRv6AbBuzwRn3NQjhneZV2WQECIqghf/Bjp1ZITB/ylwQzv+ODft/f/uZ0heJeB7Rys1DwSJQnIJHhrFZh5dS93XBkJBISoqvDVm5HtW9C5h9VONmoEb6fEAuWnu0DwAOy84L1TsgleIddUZgIBIXpF+OqFgm1S8GckBW+iR0uYx9uu3w2Ct74vd8fPA7ZrjeAtX3LvlSBIIcoe38nEAYsLDvZPCB74+eP3LugCwQOwE4P3b1lx21eRgld6AgEhel34SkocUFfwxoLNCd6f0g2CNzIxHf5IOYJXN4HAzuqgQpQy3l9fJ3HArsUKHviukPj9B6MtbB0teBDtiFj+t+ejX4miBK/MBAJCiBR3VA81nzigoeANTojat7tA8ADsD8Hff9W84DVMIKC0TUK0VvjixAEvJ56Zj2xe8MCTeSwJnh1O7AbBGx8sYCzrm/7mETybEqSGLziBgBAipwasny9xwECCB2Cn1e4C6XjBA7AvBcf83aerGQTPxvsm5Pj4f0ablIUQHSR8e9ZJHDC+ScFbzR9Xxce8vRsEb5hnOYmPOzqj4I3yFdiCEwgIIQrWg3hn01Ngj0WhYs0IHoC9J1HGdViHCx6A7R5MeR8He2e2W1rbscJl3ISomvCNicZss7e0y4+7MjhuahcIHoD9Jjj22vJ2WgghukQY0wpeuANjbiK1W8cK3jqepSSZDkaCJ4QEb4DM53ZyHe3oZMEDn45K8IQQWQVvlAchd5XgDQG7TYInhMgmeJB49t8Ngge+ALFUgieEBC+b4EEiY3nLBW9z3zN7P9jPM9idGtidroYXoicF7/RAB7ZNabOJh6fEdpvn+eT/BxQqOGS+bLrDAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE3OjQ5OjQyKzAwOjAwm1+K8AAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxNzo0OTo0MiswMDowMOoCMkwAAAFTelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAACiRjVNLcoMwDN1zincBM7KMjb3IgkCadtrATJrkBl103/tPJRhq0qENhoVkSU+/5wJ6zt3r5xd+DndFAdA/f0oJN0dExQkqYH84vvRoL81+vmmHa395h3WwLDHy3fs2l+E031j04NKnSHWA4VKA2QWQCnJyKKOFLTklchFGJP+Ho8PTR742VPrfkGifjzvjcG66HePWvO3CHFxJFrMpjZfCzabKw4RZcfDRa0HkQm1pxbOeMKN3tla7hETrVxyjQFIZLFlSc6yJolvxSwIoPTCx5OOSK6rIrviJtdXKHiNaXZjZhDltbEPbQhQlweO2D313R56JTvuh7zKdhHTgTBpR4DI11F7lZYsCnzeq1pDXJgrqvBu1xrwBUZDyoMfMy4GqKuNaDG504cV8xgdi3bK9ZTOqz+9K5OIb86yw87T4s5IAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAKF6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAGJVtjbEOgzAMRH+lEgtIdnR24sSUEakjP1C1W/+Cj69hJAy2rHvnu21Y368f58+4Dtt0WTGPfdRks8OJNQHQQosknWcU4jjsVECMZEFzpYV7zn1IwKLV/PhErk0gp88tSyMc0MUiOtVAsJC8AZ7PfoUKadKCI+rGw1fTXV3XNtFXnrr/AbRkN7fg13LbAAAAAElFTkSuQmCC) |
外観 |
---|
フェリシアン化物は、標準状態では赤色の結晶物質として現れます。 |
関連化合物
ヒル方式による化学式 C18*Fe3N18
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |