モル質量 of Glucobrassicin (C16H20N2O9S2) is 448.4680 g/mol
C16H20N2O9S2 の重量とモルの間で変換します
の元素組成 C16H20N2O9S2
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 16 | 42.8506 | 水素 | H | 1.00794 | 20 | 4.4950 | 窒素 | N | 14.0067 | 2 | 6.2465 | 酸素 | O | 15.9994 | 9 | 32.1081 | 硫黄 | S | 32.065 | 2 | 14.2998 |
モル質量を段階的に計算する |
---|
まず、C16H20N2O9S2 内の各原子の数を計算します。
C: 16, H: 20, N: 2, O: 9, S: 2
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994, S: 32.065
次に、原子数と原子量の積の合計を計算します。
モル質量 (C16H20N2O9S2) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(S) * Weight(S) =
16 * 12.0107 + 20 * 1.00794 + 2 * 14.0067 + 9 * 15.9994 + 2 * 32.065 =
448.4680 g/mol
|
化学構造 |
---|
![C16H20N2O9S2 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAAC4CAYAAACRkTtCAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETYZZ1vjGQAAAAZiS0dEAP8A/wD/oL2nkwAAJRpJREFUGBntwQm8FWSBP+7nXvbFfYdQcxkyt8ySItvRUrPU0bJMKyvTpkZzKiqbibIa2ixbJmlaLVvoVzrpaGVlkal53gMuURYuGaaZAgqIrPf755/3473coVyBcw7v86iqqjOEzcLzwsFhZ/2EYWH/MEQ/YVjYPwxRVVXVLsIZYUm4MTTD0vCDsLnVwm4hYUf9hN1DwjhVVVXtILw23BcO0iuMC9eF860WdgsJO+on7B4SxqmqqmoH4bpwlgHC80NP2DXsFhJ21E/YPSSMU1VV1erCiNATjjRAGBJWhmPDbiHh2PCC8ILwgnB8SBinqqqq1YVtQsKzrUW4O7wx7BYSrglXh6vD1eHakDBOVVVVqwvDworwcgOE4aEnHBl2Cwk76ifsHhLGqaqqagfhyvAlA4QjwoqwfdgtJOyon7B7SBinqqqqHYTDw7Lw2tBttfCUcHM4x2pht5Cwo37C7iFhnKqqqnYRXhPuDAvDHWFZ+GwYZrWwW0jYUT9h95AwTlVVVTsJg8IeYd8wWj+hO2wVuvUTusNWoVtVVVWrC0eFU8KWqqqqOl24JCT8JVwRPht2U1VV1YnCrJCQkLAyXKmqqqrThC3Cn0NCQsKSsJeqqqpOE14UloeEhEXhFlVVta8wKxxigDArHKJX2Dx8KvwxLAy3hI+HTXSo8MmQkNATloTXq6qqfYX54WgDhPnhaKuFYaERZoYXhieEF4XZ4YowRAcKF4WEhEVhThiiqqr2FeaHow0Q5oejrRZeFxaHbfUTxoWl4ZU6UCgh4b5wf/iCqqraW5gfjjZAmB+Otlr4VjjfWoQfhq/oMGFUuDUkLAx/Cbuoqqq9hflhUZgf5of5YX7oCUdbLVwWPmMtwhfCD3WY8OywNCwKCT9RVVX7C/PDyWHHsGPYMewY7glHWy38MHzVWoRvhwt0mPDhsDQsDsvD8aqqan9hfjjaAGF+ONpq4WNhlgFCV7ghfECHCZeERSHhN2GIqqraX5gfjjZAmB+OtlrYO6wMx+knvDEsC7vpMGFBWBUSPq+qqs4Q5oejDRDmh6P1Cm8Oy8JF4RPhkrA0vFbnGfr/uPcG7l3MgjBOVVWdIbwmPNEA4TXhifoJu4Z/DVPDW8JOBggjwku1t/2xCNmBGaqqqtYmbBJ+Hr6qvb0bwVK8QlVV1UBh83BFOCd0a2/fRXAdBqmqquovjA7XhI+FLquFJ4VvhG7t55cIPqOqqmptwsF6hT3D3PBa7WcQ5uDPGKuqquofCU8Lt4ej9Qqbax9PxgL8UFVV1UMJE8KL9QqvDjeEwdrDW7EMR6iqqnokwpvCbWEv7eNbuBbdqqqqHq4wKHwlPNFqoTscrfVdjU+oqqp6tMKg8LXw8zBc6+rCQmynqqrq0QovCheHkVrbYZihqtat7EkKGW4N2ZMUMlzV9kK3B2yD72BTG1Y39sRJOBfLECzBAapq3ckEEjLKGjKBhIxSdZIf4wPWv6GYiMm4CPcgCIIgCO7Edqpq3cgEEjLKGjKBhIxSdZIt9dnMujMSB2IyLsS9CIIguB3TcSqejZ1wC4LrsKWqevxlAgkZZQ2ZQEJGqTrRk/FnbOPxsQkmYQouxVIEQRDchHNxEna2dltjNoJfYxNV9fjKBBJyI5lD5pA55E8kZJSqEw3Cvh697XA4pqJgFYIgWInZmIZjsLWHbyxuQvArjFJVj59MICHPJPuR/ch+5HgSMkrV6V6KIf6xMTgG0zAbPQiCYAUKpuJwbOGx2RF/RPBjDFNVj49MICGjrCETSMgoVad7Mba3pl1wAqbhFgRBECzG5ZiKSRjh8bc77kBwPgarqscuE0jIKGvIBBIySrWxeAlux2IEQRDchfPxNjwNg60f+2AegnPRraoem0wgIaOsIRNIyCjVxmBbrEQQ3IHpOBX7o9uGMwELEXwJXarq0csY8h4yxBoyhryHDFFtDCYjuB/P0XqehcUIPqmqHr1sTqaRo60h+5CzVBuLLyL4hNZ1MJYieK+qenQyhoTcS8Z6UA4n81Qbgy7chmBfre1IrEDwDlX1yGUMCfkJ+bYH5XAyT7UxeBqCuejS+k7AKvTgTVpU2CJ8IMwIJXw3HKpXGBJ+FPbQTxgSfhT2UK0LGUNCDiCLyWH+JoeTeaqNwfsQfF77+BcEq/AqLSZsHm4IJRwXDg5nhmXhdKuF4SFhon7C8JAwUbUuZAwJGUPOIDeSEeRwMk+1MbgawUu0l9MQrMTRWkj4aPhjGK6f8PqwLGwfhoeEifoJw0PCRNW6kDEkZAwZRn5P3k8OJ/NUnW5brMISjNR+PoRgGQ6xAYUheoUbwn8YIAwOi8Jrw/CQMFE/YXhImKhaFzKGhIzxNzmILCH/Qub5m+xGulSd6EQEF2lfH0dwH55jAwjbh7l6hSXhBGsRZof3heEh4TfhqnBVuCr8OiRMVK0LGUNCxnhQvkP+TOaRTchfSIO8QNVpvofgFO2rC9MQ3IunWQ/CB8LBeoVbw+5WC4vCG6xFmBPOCMNDwr+GSWFSmBQOCQkTVY+nDCHbkDEkZIwHZXtyD5lHnkZuIyEhF5N9VJ1gKBYi2El768Y3EdyFPT3Ows7hbXqF94aP6hW+Hk60WmiGjxkgjA5Lw9FheEiYqJ8wPCRMVD1eMoycT64nu5LpZAtryPHky/4mI8lksoCErCLTyS6qdnYQgmt1hiH4AYI7Md5jFA4KW1ktbBPmhW6rheeEK/UKJ4WvWC28PcwL2+kn/Ee4O4wOw0PCRP2E4SFhourxkNHkpyTkLrKPhy1bkqnkfhKyjEwj26ja0acQfEjnGIpLEPwJO3tkhmCMXuH88Aq9wu/CvlYLw8KiMNpqYXz4ttXC0PDTcFuYEt4cvh2WhpdZLQwPCRP1E4aHhImqxyqbk1+RkDvI3h6VjCPTyEoSMp9MJiNU7WQOgok6y0jMQDAHO3j4DsFP9Aqnh8/qFc4KR+kVDgsjrUUYHI4LXwnTw4fCeL3C4PCJsJN+wuDwibCT6rHIluRqEvJHspvHLHuS6SQkZC45iQxStbonIZiHQTrPZigIfoNd/X2/xm4esCn+hG6rhZ3Dwap2k+3J9STkBjLO4yoHkZkkJJz9LRyqamVvR3CuzrUNbkCwGFt6wIvwRn1ehR316VK1s+xE5pCQ2WSMdSLd5DgWXc7QZQiuwIGqVnQZglfobE/FKgSv8YChqk6V8WQuCWmQrax7Q3AS/oIguBC7q1rFZliOFdhCZ+vCCgQvV3Wy7EluJyG/IJtav0ZjMhYiWI5p2F61ob0CwWU63/4I7kK3qlPNOIDMJyEXkxE2nDGYhhUIFmMqNlVtKOcieLvO9z4E56g61nNwN19vkP8hw7SGJ2E6ehDchckYplqfunEngj10vqsRHK7qSIdhCcKwL5JBWs+B+BWC4EacoVpfJiK4SefbFquwBCNVHedlWIrg8+jW2ibhOgTLsINqffgQgrN1vhMR/K+q4xyHFQg+gi7tYSSCYGfV+nAtgoN1vu8heLOqo5yMVQimai9PRvBX1fowDj1YhGE621AsRLCzqmNMRtCD07W2l+FKnKLPsQguUK0PpyD4vs53EILrVI/acFyKlViAX+J8fBEfxul4DQ7DM7AbNrXuTEawCm/Q+j6M4P36/CeC96vWh4sQvF7n+xSCD6setR8jCIIgCIIgCIIgCOZjNi7HhTgXZ2MyTsDhOBB7Ygy6/H1dOAvBSrxGe7gYwVH6XILgKNW6NgL3oQdjdL4/IHiW6lHZD8vRgw/jWXg2jsQb8R6cha/hf3EVbsJCBEEQBEEQBEEQBPdjLq7BpfgmPoMpuBTBUrxU+/gzgl31uR3BLqp17SUIGjrfeATzMEj1iA3D9QjO8uhsgT1xIA7HCTgVU3EuLsTlmI3bEQRBEATBzViOg7WPrRAsRLcHbINgIbpU69rnEUzR+f4NwddVj8onEPwOI6wfIzAOT8HBeCXeiv/EfQgmah+TEFyuz0EILletD8sQPE/n+xmCY1WP2IFYiRU4wJpOxAx8H1/Ah/A2nIBDMQG7YBOPrw8huED7+DcEn9Pn7Qg+q1qXNsdxCHqwic62KZZjJbZUPSKjcSOC9/m/PoEgCIIgCIIgCOZjNi7HhTgXZ2MyTsDhOBB7Yoy/byssQg/21h7ORXCSPl9H8EbVYzUMe+F4fBrTcRnuwjxMxz0IfoRhOtfLEfxc9Yh9CUETQ/xf4/AcHIU34Qx8EufiYvwat2AhgiAIgiAIgiAIgiX4E2bhddb0KQTnaQ/XIpigz3UIDlA9pOnTDSrFrldc4ch99vE5fBc/xSzcioUI7sN1OA/PRpcH7IbbEVyAITrT1xC8Q/WIHI5gKfby+NgCe+JAHI4TcCqm4lxciMsxG/MRBMHbrOkJWIaV2F1rG4plWIXRHjAMy7ESI20ELrvM4CuusKWHUIodrr7aCxsN7ynF15pNPyjF5Y2G35fir6VYNXWqhQiCYCnm4Hy8EN3Wbm/cjeC7GKSzdONOBHuoHratcQeC02w4IzEO+2Gs/+uLCL6gtT0FwQ367IfgdzpcKbZuNv1PKVaUYmUp5jebXm21a67x1mbTz0vx+1Lc1WhYOHOmRc2mVaVIKVKKlCKlSClSinzrW+7BUvwBF+BgdHt4noIFCL6CLp3jmQhuVj0i0xHMQLfWtStWYDl21Lpeg+A7+rwOwbd1uEbDl0vx62uuMdZqzaY9Gg27WK3R8ONSpBQpRUqRRkNPs+n+ZtPSUixuNi0uxX2NhoWlWFqKZT/5id/ixRjk0ZmIxQjO1jk+iOBs1cP2agT3Yiet71sIztK6zkLwHn0+heDdOlwprinFVGtRismlSClSipQipUgpUoqUIqVYVorfN5suaja9vBRDPD4mYSmCKTrDNQgOVj0sYzEPweu0h33Qg/uwjdb0UwSH6XMZgkN0uEbD10txV6PhlXPmGKafWbPs3miYV4qUIqVIKdJoWN5o+H0pLmo2vWL2bEOtG0dgBYLJ2tsY9GAxhqseUhcuRvA/2suFCM7Umu5CMFafuxGM0eFmzza6FP9dikWlmFeKj197rVF6NRquL0VKsaoUN5fiwmbTK2bPNtT68WqsQg9O0b5ORvB91cPyFgR3YXvtZQKCe7C51vIEBHfrsyOCu21Err3WqEbDCaW4q9EwTa9m07mluKjR8Mo5cwyzYbwJPVsz636O154uRPB61UPaBYsQHKM9/QzBu7SWwxD8VJ/DEVxqI9Rsekcp5mgxT+eU+7gvrAhHaS8jcB96MFb1D3VjBoKvaV+TENyJkVrHGQg+oc97EXzcRmDWLDvrpxTfLMXPtKAwJSQsC4dpH4chKKqHdAaC27CF9nYFgrdqHdMRnKDPdxEcr8Mlukrx+1LcWIoLS3F9KeY1m56hRYWPhIQl4Xnaw38hmKL6h/bFMvTgxdrfEQj+hKFaw+8R7KvPHAT72AhMn25Qs+kZzabjGg2HXnWVTbWw0BU+HxLuDU/X+m5B8HTV3zUM1yL4tM7QhesQvM6GNwqrsBxDPWAUVmEZhtoIlOK8Urx19mxDtYnQHb4REhaE/bSufRDciW7V3/URBDditM5xHIIbMciG9QwE1+gzEcEsG4Fm0z6lSCluT3RpI2FQmB4S/hr20Jp+gOAi1d81ESuxAhN0lkH4A4KX27DehOBr+pyC4Ks2As2m95QipfiCNhSGhv8NCXPDE214g7E/TsV0rETwUdVajcIfEJypM52E4Bp02XD+C8Hp+pyD4G02As2mX5UijYaXaVNhRPh5SLgxjLF+jcQL8D78FPchCILgHhyhWqtzEMzCUJ1pGG5DcJgN51cIXqjPlQier8NdcYUtS7GyFEsvv9wm2ljYNDRCwknWrdGYhCm4FEsRBEFwE87FSdgVm+AmHKdaw0HowVLsrbOdjuBKG85L8WFs6QHdWIRgax2u0XB8KdJouEQHCFuFEwwQRoQtwiCPQtg+HBM+fSsXYBWCIFiJgk/iSGxj7cbjXrxD9TebYy6Ct+t8o/BXBM/VGv4JwZ9sBBoN3y5FGg1v0YHCU8OMsCqsDPeGz4VR/oEwJhwTzg4l9ISEhPuHswgFZ+MYbOHhOwJ341MqNyC4HINsHP4dwY+0hmMQXKjDXXaZwaVYUIqUYlcdJuwa7g3nhO3D4PCMcEO4WK/QFZ4cTg7nhbkhISEhYVH4UXhveM4Uhnts3o97cS66baRegaAH+9l4bIZ7EDzdhvdxBB/U4RoNzytFSvEbHSicE2aGLv2Ep4aeMDG8JtwVEhISEu4OF4TTw9PDYI+/72AZLsZwG6G3I1iObn2eiu9hks41FcH3rXtDsAsm4SRMwTRcipsQLMTHdbhSfKwUKcVUHSjcEKZYi3BzeHd4aUi4I0wPp4b9Q7d1bwiuQA8ux6Y2MqNwP4KX6fMuBD/TubbDEvRgL4/d1jgAx+Ld+G/8FDdjBYIgCIIgWIIeLMOLdLBS/K4UaTY9WwcKd4eTrEW4PJwVRoZdbDjb4wYEBdvayJyK4Cp9NsV8BM/SuT6D4FwPbSh2wSSchKmYjoJ7EARBEARBMB8F0zEVJ2ESdkEXPopgCZ6rAzUadilFSjH/sssM1oHCreFd1iL8Nrxfa3gGbkXwW4y3ERmJOxG8QJ8PILhQ5xqHZViJ3bAF9scxmIxpuBQ3YSWCIAiCILgfN+FSTMNkHIP9MdJD68I5CO7F03WYX//aW0qRUnxThwrnh/MNELYLS8NLtY43YB6C3+MZNiJnILhUn62wCMFTtb/NcC7GWdN5CJYjCIIgCIIVuAmX4gt4F16Op2Erj49unIdgAfbTQQYN8qNnPMP173yno3WoMCmsCofrFYaG88KNYYjWMg3LEPwR/2wjsSkWIJioz1kIvqX9fRXBj6zpYixBMB8F0zEVJ2ESdsFg68cgTEdwJ56kM4zGUqzE1jpYOD3cH64M3wu3hpvC3lpPNy5FENyON2lR4Xnh02F6+K9wiH7CaeFQA4TTwqEG+BCCC/TZAfdjJf5J+3oZgvswXp/jECzCU7SOobgYwVzsrP39M4Jf2giEHcKx4aQwKQzVujbBNQiCu/BeLSZ8ICwNZ4eTw8fD4vB5vcKMMMUAYUaYYoCtsBg92FufaQi+qD1tjb8geIs+YzAPwYlaz0j8AsEc7KC9fRnBu1StaDfchCBYiGlaRHh66Akv0k+YEFaFF1stzAhTDBBmhCnW4mwE5+mzC1ZgOXbSfr6L4Cfo8oAuXIzgB1rXpmgguB5baU/duAPB3qpWdRTuRBAswXcx2AYWPhZmWYvw4/AVq4UZYYoBwowwxVo8AcuwErvrcx6Cs7WX1yK4Bzvq82YEd2F7rW1zzEIwC1toPwcguFXV6j6IxQiClfgRRtiAwvnhW9YifDr80mphRrgufCN8I3wjfCPcGab4O76IYJo+T8Yq3IdttYexmI/geH12wSIEx2gP2+J3CK7AaO3l/Qg+p2oH07EKQdCDy7GZ9SRsH44Jnw4jw/nhm9YifCr80mphRrgonBxODieHk8OcMMXfsStWYjl21OcCBB/S+rrwQwQX6NONGQjO1V7G4RYEl2K49lEQHKpqB8PxawRBEFyHHa0DYUw4JpwdSugJCQkvCJ8MV1mLcFH4utXCjDDFAGFGmOIf+DaCs/Q5AMG92FxrOxXBX7GdPu9GcBu20H52w+0ILsAQrW8H9GAJRmIIulStbgf8HkEQBLOxp8cgdIUnh5PDN8LckJCQkLAo/Ci8N+wcnhd6wv76CbuFFeFIq4UZYYoBwowwxT+wD3pwH7bR5ycI3qN1PQlLEPyzPnvifvTgEO1rb9yN4LsYpLW9AcEPMAwX4GxVO3gm/oQgCIKb8UIP3yA87VDeFM4Pd4WEhISEu8MF4fTw9DDYAOHL4e5wanh+OCXcHs4PXVYLM8IUA4QZYYqHcCGCM/V5AYK7MVrrGYyrEHxZn2G4FsFntL+nYAGCr6BL6zofwZtwIJYheJ+qHbwV9yAIguCPONbaDcb+mIwLMR/ZhMVhRUi4I0wPp4b9Q7eHELrDieGS0Aw/Dm8Og/UKHw7HGiB8OBzrIUxAcA821+dXCE7Vev4DwVxsoc9UBDditM4wEYsRnK01DcNC9OAJHnAEViB4p6odfBHLEQRB8Fe8E5vgRTgTM3A/giAI/oAv3cRxYRct7GcI3qXPSxHMxVCtYz8swyo8X59nYiVW4UCdZRKWIpiiNWyPY3A2foOFuANd+rwaq9CDk1WtbhAuRRAEQbACKxEEQXATpuEE7KSNHITgTozwgC7MRPB6rWEYrkPwSX1G4Q8IPqgzHYEVCCZb//4JJ+KruBlBEASLEHzamk5ED3pwoqrVbY7ZCIIgCFbgSnwUh2MLbe4KBG/R55UIbsRgG97HEfwOI/T5PIJZGKpzvRqr0INTrFu74CSci1sRBEGwCJdiCibhRbgfwYes6TQEK3GMqtXtgYW4H7/CVByOzXSYIxD8CUM9YBD+gOBYG9azsBIrcIA+B6EHS7GPzvc69KAHr/f4GIz9cSqm424EQRDciQsxGQdiiP/rpViO4N3W9AEEy3CoqtXtjiE6XBeuR/A6fd6I4Fp02TBGYQ6CKfpsjj8heKeNx6kIVuLlHrmROBCTcSHuQRAEwe2YjlOxP7o8PP+MlQj+zZo+imAJnquqWsBxCOZgkAcMwa0IXmLD+G8EMzFEn28i+BUG2bi8H8EyHOYfG41JmIJLsRRBEAQ34VychCd6bF6DVejBG/XpwjkI7sXTVdUGNgh/QPByfU5DcJX170XowVLspc+RCBZjdxunjyBYgiP02RaHYyoKViEIgpWYjWk4Btt4/L0FwUocq083vonwr5eSvVTVBvYmBNegywNG4q8Inm/92Qp3IHibPtviTgRvsvHqwjQEPbgVf0QQBMFS/BIfwouxifXjvQiW43B9hvD2z5CV5A6yu6ragIbhNgSH6nMGluJfrD/fQfBLDNLnIgQ/RpeN2yDcgiAIFuNyTMUkjLDh/CeCZXiRB2UouZiEzCU7q6oN6HQEV+qzKXaw/hyHYBF21eckBAvwBNX/bzhOwwU4BoO1ls8iWMQZB3hQRpJfkJA5ZAdVtYGMwl8RPNeG8UMEr9fniViI4BWqdtGF/+bLPyf3kP09KJuSBgm5nmylqjaQ/0Aww4YxGK/Spxs/R/A9VZuZPoh8l4T8lezhQdma/IaEzCJbqKoNYDMsR/AD/DP2xVgMt/69A8Ht2ErVhjKEXEhCbiO7eFC2JTeQkCvIaBtQ2CK8I3wzfCu8J2yn6nhXIAiCIAjux+2YjctxIaZhCk7FCTgc+2MMhnr09sD9CA5VtbGMID8jIbeSnTwo48gtJORSMtwGEHYJc8NV4e3htPCLcFfYS4sLe4VTw3vDa8OWqodtBL6KW3ElrsWfsRRBEARBEARBEATBPfgDrsSF+Co+jnfh9XgZDsSTsA26MAJ3IDhH1QEykvyShPyBbO9B2Y3cTkIuIIOtZ+HicFkYrFcYFC4MV2ph4WNhafh++FxohAXhBarHbDR2xgE4FMfjNHwQ5+B7+AV+g79gBYIgCIIgCIIgCHrQg+B+jFZ1iGxGmiTkWrKlB2VvMo+EfN56FDYLq8JLDBAODAk7akHhqLAiPFOv0BU+Ge4Om6rWuxEYgz0xCSfgVEzB2TgXl2I2bscqBEtwiqrDZBvyWxJyFdnEg/IU8nvyFOtR2C8k7G6AsHVIeIEWFP43fNMAYZOwKByvanmD8WRsoepQGUtuJiE/IyM8KIOtY2FIeEZ4R3hVeFJI2N0AYauQ8HwtKNwaJluLMDN8RFVVrSC7kj+TkB+RYdaRMDIcGCaHC8M9ISHhsjAsrAovNkCYEBKeqAWFW8NbrEWYET6lqqpWkSeTv5LZZFuPk1vsvHk4LEwNvwrLQkJCQsJvw7RwjNXCz8P/GCCcG2ZqUeHn4SPWItwa3qGqqlaSvcnW5EgScro15ExyiX8o25LDyVRy+Tt9ZEZISEhYGWaHaeGE8AQDhH3DgvD9cFR4WTgvLA7P0CLCFvoJU8PNYYh+wnNCwj6qqmpFOZIsJfeScR6UM8kl1pAnkhPIF8kNJCQkJDu75dZwefhwOCRs6mEIu4TPhivDVWFaeJJ+QpcNJDw7zA/H6hW2DX8OF4X9w3bhiHBb+IqqqlpVjiRzydfJ+R6UM8kl5CnkPDKXhISEhCwiPyb/Tp5LRlgHwuTw9dBtPQsHh/tCwtf0E3YO3wzzwqowJ5wRBquqqlXlSDKXPIEsJi/1NzmTXEImkJCQe8mlZDI5kAy1joWdw8KQcE7osp6El4T7Q8IXQreqqtpdjiRz/U0mkz+SUeRMcgkZQk4me5IuG0CYGBaHhE9ZD8Irw/KQ8NnQpVd4fpioqqp2lCPJXH+ToeS35IPkTHKJFhEOCktDwvusQ+GksCokTNVPOCzcHxaEXVRV1W5yJJnrQXk+WULOJZdoIeGIsCIkvNM6EN4SekLCv+snvDwsDwmfD92qqmo3OZLMtYacR1aQS7SYcHxYFXrCyR5HC57j1JCwKpyin3BcWBESPqKqqnaVI8lca8h2ZAG5RAsKp4SesGrlpl7lMUp0leJjzautWvJEl4cT9BNOCatCwlRVVbWzbEue7f/IXmQ/LSqctnScuTOvdHMpjvEoJbpKcXYpUopljYaj9RMmh4SecLqqqqoN5ZpfeG8pUoqlpTjYIzR9ukGl+EopUoqljYaX6SdMDgkrwxtUVVVtaI2Gj5YipVhy9dWe62GaPdvQZtP/K0VKsXjmTC/UK9E16+fOWjHadWF5eKWqqqpWkOhqNp1TipTi3quv9nQPoRQjS/HDUqQUC2bO9Ey9pk83qNn0pVLkmp+5c+XWDlNVVdVKEt2lOK8UKcWCRsN+/o7Zs40uxU9LkVLcOXOmffW67DKDm03nliKluK8UB6uqqmpF06cbVIrppUgp7izFk6xFs+k9pUgp/tRoGK/XnDmGleL8UqQU9zQanqWqqqqVzZljWCl+XIqU4tYrrrClAaZPN6gUH581y856XXutUaX4cSlSinmNhgNUVVW1g1KMbDT8ohRTrTZzpp1K8dVS/KYUvynFV6+6ynZ6zZpl82bTr0qRUtxRir1VVVW1k9mzDbVaorsUvy3FhTNnek4pDizFu6+4wgirlWLrUswqRUpxSyl2VVVV1a4aDbuUIjNn2tdalGJkKWaU4oarrzZOVVVVO7viCluWYnkp/rsUI63FrFk2v/Za26qqquoEzabjSrGgFAubTV+aOdOTVVVVdbLLLjO8FMc0Gn5RintmzvRkVVVV7a4URzSbPuLvSHSX4relOFNVVVU7K8WrSrGiFGk0HGK1RFeiW6/LLjO4FDc2m96hqqqqXTWb3liKVaVIKabqNXOmZ5biplKcXYr3Npt+Xoo7r7nG2FJsVoo3q6qqaifNpn8pRU8pUor/0E8pdi3F80vx76X4dClOL8XWie5SXFmKNJvep6qqqh2UYnIpUoqeUpyqn2bTcaVY3mh4vbUoxRGlWFGKNBreqaqqqlUlukrxsVKkFCubTa/TT7PpX0rRU4o0Gs7wdzSbXl2KVaXoKcXJqqqqWk3onll8vhQpxbJGw9H6KcXkUqQUPaU43UNoNJxYip5S9DQaTlRVVdUqwqDwlYX7+UUpljYaXqafUkwuRUqxshRv8DA1m04rRUqxshTHqKqq2tDC0PC9kLDwryc4UK9EV6Phk6VIKVY2Gk7wCJXiA6VIKZY1Gg5VVVW1oYSR4ZKQsCA8U6/p0w0qxRdLkVIsazYd5VFqNp1Visw91WXh2aqqqta3MDr8JCTcGfbVKwy57Y3OKkVKsbjRMMljkOj601t8MKwM94anq6qqWl/CFuHKkHB72FOvMDxcGFb9+RSXNhqe5XEQusN5IWFB2E9VVdW6FrYL14SEW8KueoVR4cchYV44wOMoDArTQ8Kd4UmqqqrWlTAi3BASZocxeoXNw69Cwh1hb+tAGBouDglzw86qqqrWlfDW0Azb6BW2DL8OCX8Mu1mHwsjwi5AwJ+ygqqpqXQnD9Arbh+tDwg1hnPUgbBoaIeH6sJWqqqpHK3SFZ4bXhFeGXQwQdgpzQsLsMMZ6FLYOvwn3hgNUVVU9GmGH8OtwV7gk/DLcHz4XBukVzgwJvw5b2gDCDuGp+gmDw57hKWET/YTBYVwYpJ8wOIwLg1RVtXEJPw2/DFvoFZ4W7g2n6RW6wzvDJlpEOCnMC/eGO8Ly8IUw3GphfEgYq58wPiSMVVXVxiM8KSQcYIDwoTBHiwrHhKXhVaHLamHfcHP4qtXC+JAwVj9hfEgYq6qqjUd4ZVgRBhsgvCQkbKIFhZnhcwYILw0rw9gwPiSM1U8YHxLGqqpq4xFODAusRTgwJGynxYSRYVU40gBheOgJR4XxIeEFYa+wV9grvCQkjFVV1cYjHB4SRhkgvCIsC0O1mLB9SJhoLcKCcGIYHxJuC7eGW8Ot4c8hYayqqjYeYeuwNBxngPCd8FMtKIwMPeEIA4ThoSccFcaHhLH6CeNDwlhVVW1cwkfDX8KLw5CwaZgclodna1HhmnC2AcIhYVUYG8aHhLH6CeNDwlhVVW1cQnf493BXWBZ6wvXhxVpYOD4sCYfoFZ4YZoevWy2MDwlj9RPGh4SxqqraOIXusH3YXJsIk8OScFOYFZaF74TRVgvjQ8JY/YTxIWGsqqqqdhI2Cc8NB4Wx+glDwx5hsH7C0LBHGKxD/H8HUwiSPiHNnAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxNzo1NDoyNSswMDowMKzn6YkAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTc6NTQ6MjUrMDA6MDDdulE1AAACtHpUWHRNT0wgcmRraXQgMjAyMy4wOS4zAAA4jX1VS24bMQzd+xS6QAb8iRIXXSR2GhRFbKBNe4fue3/0UdNklFTo2KIlzRNJkY/0qeTz7fL11+/y9sjldCqF/vONiPJTiej0XHJSHh6fvlzL+eX+4XXnfPtxffleJIoyzuDzHnv/cnt+3eFyLndtIxVnKXe8WfNOWmij8RxnZUd6C1EgaWNRxexfpCbSt65kJIU3ZtVYAS2BdVO1qPk+wt18AawJtM171922Vu9iC6TvKqs29nGfGlotFsiWSN2EWHqM+zhR9AWyJ1K2kN694j7K8LctgFGu6aZYqyZFNpLovvKSaVfJiHXjdDPP0Mo4jwzR1iiatpz1cBNeQQX2ERtR65RKo2vXJVLLDRdpnTtbIl2l2dJTK2DS1rkSNMHlhoDVukLWXac0h3eIbKuqbZV2diB1CxKzkSPvHroKKLeB7IZkR+pEuKovrXf4ieBINx/BQQaoLXUGAgpSIpqcPO+hvEyS0ADW6B2lJKApu6/uI5ki3aiCcwogqNmWlJOsIdsoSDsP1QjREqhDo3uV4RqD7rZKJGrgBotCCCANEofJsoSkDtseGcxE4kBttEJmenzYRE6BrC3yzAKZ6UGxWW/gCfhmYObSeB95hBYBMw2tg0H4FTAAhEWv2Y5wgoPaqhs9Xi/v+tje2R5u18vR2eBSkaN9GYYePcpyHJ0oP/XoN1gUP5pKLtvROQyjH+3BMOJoAoy3PNc6D8FTSUsKlqlyeQidKpSHsKkSJQXXqeL2HZ8qi8dOmyqIh60+VQpnEeD3/PnpE091MfZlLgBOITwxnVOITJTOJRg7cZdTiE0k3Xfqe4tYcwrxiXq7tjaQOhFtt/vBZ+l/PYwP+EBOoOst25nhONKt4x5w6y1ryaeZPbl+/U/F/PQH0dttFUX1PY4AAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAY96VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAKJFFUbtuIzEM/JWUu4DM8C0yhoEAvsLVbRGkCly5T+smH3+kUpwaCaPhcIY8Lh/b5di3Yz9e/16u2+v1QY+v79v9wY8+xPvH1/X9/Xano+7bfbse+y+wrcf/m46Xn41g8nQeJ4FpInOcGYIMZZy4vpBsnAUSWXWcCDw8tZHQYOuqwGlVVTpBQYsjPIuDICwajWRIyDifECbmrCb1inRlKpCBvESaxzqtIYFqzNk0csSMRUuOmINASNML0cXXwYCc0YiBiKYNhEx3bcghBLWqiESygAk+k2Vps4jwwlDYl3mdHkvJZJI3Yilmq51HyCoU82BdgTjUKwaCKeNcg6BK2EikkGsPlNHzt2Mqty0Bd2MvEpWUVuZSz+hplXfBnqivP27EZta4m4SJEqNNmZR02dSoZjVidZUWrtryzWWW59pdVXIMrbRUGzt3beUohpQ97z2ZmxOPolLWIvbx/HyjKLODKyAPNuD5/PPGtRcbPEHw5x8JjIc3wbVKwAAAAABJRU5ErkJggg==) |
関連化合物
ヒル方式による化学式 C16H20N2O9S2
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |