モル質量 of K3[Fe(C2O4)3] (フェリオシュウ酸カリウム) is 437.1969 g/mol
K3[Fe(C2O4)3] の重量とモルの間で変換します
の元素組成 K3[Fe(C2O4)3]
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
カリウム | K | 39.0983 | 3 | 26.8288 | 鉄 | Fe | 55.845 | 1 | 12.7734 | 炭素 | C | 12.0107 | 6 | 16.4832 | 酸素 | O | 15.9994 | 12 | 43.9145 |
モル質量を段階的に計算する |
---|
まず、K3[Fe(C2O4)3] 内の各原子の数を計算します。
K: 3, Fe: 1, C: 6, O: 12
次に、周期表の各元素の原子量を調べます。
K: 39.0983, Fe: 55.845, C: 12.0107, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (K3[Fe(C2O4)3]) = ∑ Counti * Weighti =
Count(K) * Weight(K) + Count(Fe) * Weight(Fe) + Count(C) * Weight(C) + Count(O) * Weight(O) =
3 * 39.0983 + 1 * 55.845 + 6 * 12.0107 + 12 * 15.9994 =
437.1969 g/mol
|
化学構造 |
---|
![K3[Fe(C2O4)3] (フェリオシュウ酸カリウム) - 化学構造 K3[Fe(C2O4)3] (フェリオシュウ酸カリウム) - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEkCAYAAACygI3wAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETg6W7+/5QAAAAZiS0dEAP8A/wD/oL2nkwAALkhJREFUeNrtnXmYHFXVh9+Z7AsJCXsIJISdEAQRQYgCAgJiAEFABSIioKKssuMSEf2CGwQBhU9FIx8gCqgRZHNBg+wgYAgIJBgEwhZIIHsy5/ujTtlnKt0zVTM9k+6e3/s8/SRTde+t6lO3fn2Xc88FIWqL3YF5/hlZIU0f4JaQ7rQyaXoDBhwjkwohapW9XagM2LhCmitCmmuBJgmeEKIRBe/0cP4vQL8K5UjwhBB1LXj7Ayv83AxgWOb8CO/q3gLc6ukeC8dOlHmFEPUgeGOBt/z4S8CoMnmHA1/xz9c87U3h2P4yrxCi1gVvfeDffmwhsHOOctSlFULUneANAO7zv1cAB+UsR4InhKgrwRtFMgub/v3FAuX0Ah4GPiKTCiHqQfB2Bxb5/xcBm8s8QohG7tJ+Mvw9E1hDJhJCNKrgAVwajl0nEwkhGlnwepM4GafHT5GZhBCNKngA6wEv+PHlwAdkKiFEowoewC7AEj83F9hQ5hJCNKrgAXw+nP870FcmE0I0quAB/DikuUQmE0I0suD1Bx4I6SbKbEKIemQ34Dn/jGgj3cbAE57ucSoHCxVCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgjRtfQBhvmnuY10/UO6IRXSbOfnhRCiJtkbMP9sXCHNEJJNuA1oAY4uk6a3nz9GJhVC1Kvg9QbuCGnOrVCOBE8IUfeCd0U4/+M2ypHgCSHqWvBOC+duc1GLjAbmhI8Bb4S/L5R5hRD1IHj7Ayv8+BPA0DJ5BwEH+eejnnZKOLadzCuEqHXBGwu85cdeBDbKUY66tEKIuhO89YF/+98LgO1zliPBE0LUleBtCdzr/18O7FugnGbgamA3mVQIUQ+CtzPwchC83WUeIUQjd2l3BZb633OBDWUiIUSjCh7AyeHYvUBfmUkI0aiCB/DTcPwHMpMQopEFrz/wUDh3jEwlhGhUwQMYBbzm5xYD75a5hBCNKnjp+XTFxWxgLZlMCNGoggdwXkgzjbbj5gkhRF0LXhPwq5DuKzKbEKIeGQfc4J+120g3BPi5p7seGCHTCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxGphOMlm3HsD/dtIt2lI9+4y55uAo4AxMqkQolbZGzD/bFwhzSbAK55mMbBrmTS9/fwxMqkQol4FbwjwhJ9vAT5ZoRwJnhCirgWvN3BHOP+lzPlmYE3/rOVpTgzHBsi8Qoh6EbzLw7mryuTdPJwv97lC5hVC1IPgnRaO3+KtvXLd2E38s5mnPSMcW0vmFULUuuDtD6zwYw8Dg3OUozE8IUTdCd5Y4C3/+z/AyJzlSPCEEHUleDsBc/z/i1z88tLk3eBtZFIhRD0I3pbAI+HvT8s8QohG7tKOBl6n5GT8bplICNGoggfwIUqTFs+j2VYhRAMLHsDXwvE7gF4ylRCiUQWvCbgxnPuaTCWEaFTBA1gDeNLPrQQ+LHMJIRpV8AC2Aub7+XkkYaKEEKIhBQ/goySRUgx4DBgoswkhGlXwAL4T0l0jswkh6pHNgMn+WbONdL2BL4e0o2Q6IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGL1YTDaYKLBeQbfMviSwcEGQ2UdIUSjCN1OBn8xsAqfZQZXGqwrawkh6lnsDjdY4sK23OAug4sMzjf4gcHMIHyzDDaX1YQQ9Sh27wpi94TB2DJpmgyOMljk6WYYDJD1hBD1Jnh/cxGba7BOO2kPDS29c2Q9IUQ9id12QcC+kDPPXZ5+jkFzZy6+icEJBt/xwcEpBmcb7GzQS49HCFFlwTvDxavFYO2ceY4JIrl1R4XuJr9opRmSGQb76REJIaooeNe5vjxXIM82QZeOKnrB7b3vnBbwJ4OveEvvdL+hhX5upcGJekxCiCoJ3h9dW/5aIM/QoFenFbnYEIPnPOPrBntUSLexwQOeboXB+/WohBBVELz7XFduL5CndxC8rxa52KTQchvfTtphBv/x9I/oUQkhqiB4d3WyhXdq3kzNBi97ppty5jkhXGgXPS4hRCcF73rXk2cL5Nm68BiewbYh08cLKOtKz3OeHpcQopOCd2aYpR2WM89RQbv2MNjMYN02XVQMjg6ZNi9wg095nhv0uIQQnRS8HYMOHZcjfW+Dx4JIRk+SNwx+Wbb36TOwacI1Ctxgurj3z3pcQoicutGnjXPphOjzBoPbSLeBwdMZkXvZJ14XZI7/oJXvsC/KTU/2KXDjt3qeB/QYhRA5NGNPg2cNtqxwfjf3/jCDP5eLhmIw2ODfQbPmxfJ8TmIXgztCmstiASeHE0ML3PxfPc+depRCiHb04pAQGGByG+m+GOYH3jT4kcGxBoe5Vs0KevWmwfYVymk2+Hno8u6Vnvh4KGDbAl9gtue5Ro9TCNGGVhzloZ7M4LL21r0aTDB4po3VXuatvE3bKWeQwQue/o704GahkE/n/ALrhoHCU8ucH2dwvB61ED1e7GKLbXKBfH0M9jL4prfUbjC4u2jjLPgYtxgMT+NLPddKBdsv5LRQyDZlbvSffv5XeaeYhRANJ3ZnB504vQP5B2T+vtLLe61AGR8IIrl/evCMVQ5WLmAdg1c97R8rpDnUBxPT0C1agiZEzxG6JoPvhyWoxxbIO8bgFIPpBrdkzt3mZd5ToLz1grZ9Lj3Y3yOMmk/rTqiQebPg+7K4rWalr7udHr70JIWWEqLhxa6XwU/9vV9icGiOPDt4cJKZmXG6Vw36hXTpets/FLiffqG8c+OJLdz/JT15v8GFBl/wXYNuNlgavsjhOS7W24UunWq+12ATVQshGlLs+hnc6O/6Owb7tJF2rGvD02Wchqf6xEW/TJ7pRYbePM+gUPYZ2ZPrG/wsDDKW+9xrsHNBQ+wZAg68ZXCEqkeXVry+BiMMRhr0l0Uq2mmg90TWN+gti3TKloOD79s8g/dlzjcbjDeY7L54WV1pMbi0Hcfk33vaBwvc10bhGp9pq9870eACgx8afNtnW7bthEHWNvhduPhUg4GqKlWrcEM8fuHDZZbazPSdn9aTnRhjcEVwq7KwQ9Y97uvVTzWqkE2He0PIDF4yGBe6t+M9YvpLGXvPCctTlxp8LMd1vuvpF+YdHjP4cLjmrtX4slsbDCqQfmIIJPqkwXaqMp1+BruFiaR0zHSuV7Jl4fjbBof0YDt9MWOPxe6n9WrmZXy2QyHDe6ZNNzB4PGybuLXB3i5yr2TsOtuP72nw69D1/VDOa8WNez6QM8+l4VkP6OyXXdPH/Z4y2KFAvrHBSIsNTlHV6fAz2CFsWfeKweeiK5B3NY4K47MrDD6SKWOowe5lPu9pIDt9NrwsjxockBkQ38CXWaY/xq8ZbJQpY1QFO23WQ+veJqF7OsdF7K2MyD3nIjfeZ28HtdX1bed6AzxAca5Qdu4v/Kan/3k1vvCmYXZ3iXcHmgrc/JRgmJsN1pKEFbJ/r+Dz+JLBmDbSrhe6EK/EZYT+0pbdv6SBurELw9YFA9pIu2v4Abktc25SBTtd1gPr3o4+wWBhUjLuezOpjI/uMIO/h8X+23XguueF65zYRrr+wY1lSbk9bjv6xfu7cKXjRncYrF8g/yHBcHPyNlUFGBwUHn6e6f/3ldsDwJ3F1ynzGdYgdrrYv/Mig5EFX6rtw/GBFew0uIfUt2E+JHVXmXHiVOS2qJB3/eDSNjtvq9j1ZYLBu/3v3mHFRYvB/3mwgN5+fg2Dj4UepHVJD9JfvtfDRrr7Fci7cQhGsMJncvpI0tq127Vus/8UGMS93/Pc14PslA6YX5sz/fCw0P1/engdW8tFblpwS4suJOfnWNO6SVgbO8Ngwxy9vwk+sTk/2yX1H55fl2lpv535e5HB57vSOCMz6jvFoG/OvFmfvfva6qKJVgEcri2Q51uhmd+vB9hodHgBji+Q796eGu/R3+MTXOSWB/utDC5rv8rjyuNbKaYuaQ9W2nPWx5GPdD++RRnhetjgpDJ59jT4hU88tYR6/bh7JYzsDmM1+9KQdDbsgSKDuh6q+YXgs/dxSVtFO6eV72sF8k0MFWmTHmCnPYrO7Hm+q9PuVw+pT6PCkq7YXV1icKfBNUH8Ls0zVm+wU+j1/TkbYDh0kaeFFnWuLnKF92GN1WnAnUNQgvkGRxbIO9RDNEefvUGSuVVsVHhPzsy437t7gJ0OLjcelyPfJemPbqPa5izY0uDLPmsdxWahdxk/4f6dZwYRPD+n/fYM0Yd/mzrAuz9uKnLLMq3H6S66I+v5pbwuI1yDC+SPPnszDd4lqfuvbQYHu36pQL5DQr5xPcBOEzoi8MF/6/UGM8lYYBLw0LCkB7U0iNw0f+diS+nsS5PtHFryboVocKC7m5l3OTep0EVeEURug0aqdBPdwdA64LO3jc/utBwH00lmXJro4bhPU/oLeWGBfJ8JFW6jHmCn94fvu1eBfNd4nmfq3ARNJEtBLyLZAtHC5/UnklVUB5QZz20Gfujpll2c02HdNwVLRe2vbXSRTykXwr2RKt5WBv/wL73M++fNOfMOvA4uCA/qZnqYz57/Sn7J4Hvh2Iwi+wl7notDVJxePcBu64aX7eQC+dK6Oi0cu9rg83XQGmkGxpME3HwmK3LAVJKISJUmFHsDP/P0S4CP5rTZpDLuKulsadp6HNKTXtpO+ey54d/wBzGXnEtS6lzksgPJywyG+/kfB/eAfjnLnNHT9iIJqwGm5Uw/IngLnOfHxmbGmx7yF7xWVln0cpGbAryYEbkXgCtd5NqbWe3nDQoD3gb2bsdWadSTV8qMA6YiN5ieTMZn75X2go5m2Ai42x9Iiz/gPg1km3FegZ7IVKD57mR5SCpumRnIPHt57hfSH92D6tuk8GOxVY70F4UxplF+LF2id3PGbaLFfRvPas8frYtFbm5G5J734+MLDAENBu7y/G9QISpSELmnyrTm7ikX2qnH40udbu+Iz54/6EnACn8491PHPnuhAj2ZqTzzfKLnsEqRZUKMsHltTeq420G6vd3TPalCel1LV/M8ZLBmG2n3DWOjP6uQppxjbNadYscu+jr9vaU2lWQGOYrccx0QuZThJM7oBrxEiIzUTminxeHH5DApW9sVsSnjs/dgwS7CLsAsf0jzgU/Uocj9K1OBXg8BEPvmKGez8DIvMDg3Tkb40qcTQ5djUdF4hg1S1z4W/Baf89ZaXE+8hYdBWxoipqyZc5hmgu+38GpbC+c7cfsDg8gtyIjcDP/x74zAjgCeCKK5aXuhnZbCT94oBQFYYLCHFC1/ZXxv8NlbYHBUgexDgetDBZhKDfrshV/JKcHzPIayTkWudwfF85kyA8XZpTYvGezWg+vZYWVaZPPLOL3e15GJiYxIvJwp8/mC4jcMmAjcALxTQeS2rIJZxrjIWX+YcS8c0U5op/FrJ24rd64Hb7ydrIJ4j1SseGUZ5stVzGDZ7vB9ig12TgwVYyYFnEy78Du19SsZX4DmKlyrr7fk/pgZY1rqESrO7PGDx6UW74XubLs8I3y/d2fb5io/+xfLBL+8sswP3Fpej6cBS4PArSRxyTqb6k6SbOvdVzsEXmopOQrH7vkFmaGS4cC9oes7TurVuYpy/FXJDKIBT1HAZ48kaOM/KE2nd7vPnsf1rxQAcVaVujh57mNwj3IB6Lid1uzqyNveut/RhzBatcTnwhvfhOkbwQPA8iByKyj5nY6o8i0NJHFWX5Jeb3Tyg9xSKbSTswHwuOeZRfdP0jQsWwGPumGXefM9769uf5KB2xbPfzvFXF86WoE+NiTZMPiNjMg9ZvC1zoTH78IXcctGdj52p/URNXZPTVfBgZ+Du3aCxc2hq9qr5G51JdVfXjUc+LS3Hpdlusj3A2c+1fba6k0oOS7/kxqzayPQLyNcd1JsXOVgEifLtBLt2wUilw4kv51WnpeTMY30V3KrGhaDvX31y18b0QHZI+s+5ZGLa2FJ4ibeWpse6rQ1wZJx8PRlMPsu+HsQoYUuThPp+FBEpS5y+nmYfIvzx1Ly7XsABertUj4EvOzGfoViPnsjqa7P3nDgGK9ASzJjLPcAp4+HjetEEIYFN5VJDSh46d6oT3R6L4OO0wR83VtEUWjmk4T0+hihO71dMglxPvBIJv07JJMXh+cQv5HACV5Hs13kZ4PYTsk53PPe0HD4I6szIkkPYj2ScNtRuPL67DX7L+uy8AtVZOyhvYHkU2gnoGENi8IH3Ll2pcGeDSR2hwUfsdU9qH6/15d53hs4jHxeBKPKtQiBxV4XTwDWaSftEu8ZnQJ8I5ybnPPePxh6L79BW352+69lFK4HKTZjtTM+/e6/sG2Fq1oniFylgeT1G0QcvuHi8EIj7Cni0bPnFQ342YXs672UzvQsNqrQalvpdTmK3KLQFR7q783k0FjIG+78YBdXI4k2rH17VxM7URo8XUCxJVJDgeto7bM3uMyv5MoKv5INF93BI01PLxqEoIa/S7pJzK8bsO6PJYl6MptVx+NagH8BZ1GaUOhFMgFiLpSfynmdiUFYL0XRiVY7Q4BrwsO+gRxe8YETSAaF0wmN+9v4lWx41w7fnT2dXf5cHX+PbwU/t+ENJHKTSFy0osDNI3G4vwy4lVXHlB+mNHa4EPhwzuud3IGur+gmJoYxhtnk2+NyBxIHzoczFagas2L1LHqHhnGv7erw/nf38cjldb6apKOhncp6DVAKJDCJ9p/r2aG1eKrkpTbZktKs1nIq++yNLlMR5nlL8QAU3QGD/3XR++dqnNnsyH2vHVYzfKUOTV+t0E4pg0gmR64PPZn08wqrbr/ZBFwS3qFjJCu1TT//RUzH3u5iVZ+9eyhNPLQXALGnCt7AELHl8jq55ybfM8HqzKew2qGdKpFGV7kqdFWvD+c7FOxT1Ab7UPLZezUzbjHDj18nM7UpINuGtbgH18H9nhLCY9W6D2RXhXbKS7oG9o7QUMgd7FPUJusCf2BVn71U8K6VidoVkZODiIySOFeF0WW6l48CX6b8utWu4J4geLmCfYr6IPXZSx2FH6LkuPwVmSdXN/E3tdxNzHS/L6sT0z5LdUM7FeV//R34IRWCfYr6ZidKM12pw/LnZJZcghKXnn21Bu+vHidYVnecxm9RcsVKu9FjVNsbizWAX4RuhAQvv6h80JedLZ8Ju9bKfb0XDp6bRIZeZImfmsjHdzLd6fVkksblLglecZbCNybCXU2Jn2MtOPOOBt5shrm3yH2ioy28OTSOY7aowI8keB2iN6XB7htr4F6m+73cpEfTYcH7skwhwROV2YjESdtYvQvyv0HJGVcx2ToueOfJFBI80TYfoxSeaByJq8/ILr7mFiTrRO8hiW6zgsS5fE89DgmekOB1NT91Gz5NaS3yL7rwepfSOhqIAV/TY5DgCQledzAI3+UqfJbTNfsb9CNxiM2GQboO7b4mwRMSvG7gijICZMA5XXCtIypcy0gi8QoJnpDgdSmzKgjQ01R//eftFa41n+5biiXBExK8Hsz5tA6UGj/vr+J1RpJMUGSv8QxyNJbgCQleN3IAq0b6MJIJjWrx1TLl/4FV47gJCZ6Q4HU521LaVySGxa/GFn5NlEJ8pZ8pNODeuRI8IcGrH4az6jjbyeUSGgwxOMjgTIPJBl81ON7KRwyJkxXLgE/I1BI8IcGrBXoBFweBeikjdGsZXGaw1COblPs8YLB7yLYHiXPzImBHmViCJyR4tcbpJFtmTghiN8rg6SBsMw0uPRdaLgR7CR4KQrjC4LhQ3lp0/SoOCZ6Q4IkO0xzEro/Bg2EXtKOs5LaS7juyncEWBo8E0RufaSEeb3B9mc9BMrcET0jwagKDE0PL7nA/fDxJwMm0+3shSby94QYveNrHYznLknJ+XeajjWYkeEKC12U0kbij5PlsZTDDBexvnr8flf33djf4dCqQbyerKM4n2bkr3UrzRmBzPQYJnpDgdQd9qbzMq9VnO7gitO6+EMp4vUKeMwwGpeN5P0n2fJgHnAUcCJzmeZ8HhuhRSPCEBK87BW8G8KdKn2/C5UHw4k5Yj5YRu4V4XLt0LO8R+DewW+b6x3n6/cvcWx+SpWaD9JgkeEKCV23BO6qthAbHBcGLM62/LSN4Pwr5pnmeB8sUe6ynP6DMudF+bh89JgmekOB1t+CdEgQvRiW+rIzgjQv5rvc8T2WKHEeyhvafJGOBEjwJnpDg1YzgHVumhbfRAPj9pmA7go0FWw+eJERYCS28B/zQFEph5R8F1q5wSQmeBE9I8Fab4B2YCt4y2OVE+MmtsHJhmVUWz8E78+Frvql26o93ixe1C/BJ4AKSQKDTKY3T7UISqmoWyQ5cRrL+Nj12oh6ZBE+CJ8HrDsHbMBW02TA7CtxLYA+BzUzEMIrfbINl/v8LyhR7gF/7JP97HeBQ/3zOz309HNtSj0yCJ8GT4OXl026v4WUE7xUSB+Jyn++66M2MQncfzLo66XL+d/xuI/juGWBlWn4fCOK5o8Fhz8Gxh4GdCXcYHGawlbq0EjwhwasGfUj2qYgtqrx+eL9wobosFbBboGWNZPKiL3A/paVl2wIt+4C1lMTurebkZdzCy7mqQsCBcyR4EjwhwasW3wPuBcaUEbzzgR0qfEa5UN0aVk6sPAe+D5yZEcdz1oE372wtZCu3SMbg5gGTgGNI9qJ9E3gRWK/Mva7tQqtIyBI8IcGrCkXG8AYbLDewBUHM7gA7HezjYMeB/Qhsnp/zFl6Lgb2evIzfIXFPWUAyKfFTYGM9BgmekODVmuDtkYrckWC3w7xUzMp93oa5N8JZBrP82PUytwRPSPDqRfCOTsVsjPvQGWz+c7jpcrBfgl0NdlUSK28vS8YMMbjN8/1d5pbgCQlevQjeSangrZ2kX0yy+U6MjJxu4D0y5Pul53tS5pbgCQlevQje51LB2wCWep7LgRt7gR0GdkiprG8CAz3fzZ7vUZlbgickePUieEekgndgMtub5pvXG+wBsJtbt/Lu9nx/9Xx/lrkleEKCVy+CNy5MShzhL9cSKvvu/WMkDLBkcsMsCTIgJHhCgrfaaAbO9c/YdgSvl8GbLl4/88Ob4hGPP56smLDeJcH7uMFuQSS1LaMET0jw6geDS128FlrijNwE/ACwLaFlDFgz3ACcCjQZ/MbTv2E+pickeEKCVy+CN9rg7dTNxGCon1qD0tKycZ72tNC6Ozt0oYUET0jwapIPksyujgqid7TBShey5w0+azCqD7QMB7s82cvi5iB2dx4D/UkcjxeR2bJRSPCEBK8WOBpY4bZ9MdPSOyJMRlT6tBhMtUTs1qO0u9kKkrW0QoInJHirnV7AZFrPuH6rTPd2mMHZBncbzPUNtxf4Vo5XZDb6AbgzU+aV+GoMIcETErzVwXDgjowwraB8NJOi7Muqrit/pPX+GEKCJyR43cKWJJFMsqJ0U5XKbybZqjFb/hxgR5lfgickeN3FR4C3KO9APKGK17mgwjXeAT6sxyDBExK87mBOBSF6CehdxeuMoTR5kf1coscgwRMSvO7gjxVE6KJuutYCYH89BgmekOB1BwMrtPK6YpewI8tc5xY9AgmekOB1F192G75JsleskewX2xUMAB4nWZlxlbfuDJioxyDBExK8rua9wDIXoH2ADUkmKrp67eua/u8xlCYutO+sBE9I8LqMoSS7iRnwP6vxPq7xe3gIrbeV4AkJXhdxrdvuwdUsNIOBp/1evqPHIsETlblBglecB+HofvAcMJ8krl1NdK3fB39ZDvvpCXVI8M6XKRqXJuAUSmGJJHg5MdjK4J134J2D4dBaua9fwxc88MBcq85ytp4meC8A75c5Go8NWHUxugQvn9j1M3jEheXqGru3ZoM7/N5ut2Q5msgveEbi2H1DjbTaRRXYB3jZH+6rJJvDGHCGTJNLVKa4oDxjSeDOWru/9Qxe9nvUM83HD/wd+DMlN59lJBFp1pV56pM+wKTQhb0LGAHM8L+vlYnaFZP9PU7dsjLhm2rpPverh/usIe7xd+AOfyeupBTLcB5JxOn+MlP9sCXwCKUtACdR6u5I8PK3nOZ6y+n0Orjfi/1enzUYoieYW/BStgGm0ToqzUSSsW9Rw0wE3vaHNht4X+b8435uIckkxgiZbBXxaDa40wXkNquDSp8Za/y5nmJZNvY6v8jfgVvLpNkb+EcQvgeAD8h0tccQSg6pRjIQu2aZdDuHbq75//8KnOYVQoIH57lwvGKwfh3d92YeRdmsnX1zu4kvk/gJjl6N97AFybaaD9F60m4plScqmr3h8FJIfyftbM0puo+dgGcpRdI4up30G/gDnUqyRClWhBneBe6Ry5YMdvKxsBaDA+rw/o91wXvbkpd9dTGAZDwsjQJ9I7BHN117LMk43PRM3V7o3dbPkm9yYqCXMx9NbNQEqW/dUkorADYvkH88pagfSynNWGXFb5seInaDDf7lgnFRHX+P//Pv8JCt3hUhO7hALAp16imvs9VeezzW6+qTZVpy6f9/W/D9SFkbmEIyHm4kQ0aT0MRGt7IecBslX6Ip5K/cvfyXa5nnv9+b9/1JFsJfSeLCEivOc36N8TToQG4NCUVnv8dQg1k1JNzren17IdSnN70+dWYYJRW5pzN19XXvvUzwYZ1qtdK2orRSKXVcPgH5P3Y5H6LkW/cKxYJBbgTcnRHKPhVEcbyffzlToZ5vNPGroa5gI3fN+wKHUZolTbu700gmC9qjOdTJ/2Tq5KtB5Pq00UpbUYVW2l6UvCDSIA57SJaqTz9/aGnY7ztJxuPycrD/+hkwl2RnrLwtwrSivciqm8pc6RWtd52KQ60N9lfre9Xy5MuOLlDLMsJxQhQhgz6/SzY4v9J/3GPdmwV8l8QTIe8P79ZVaqU1u3jPpvXExraSqeqwFcmu9mmzfFKBh9Q/I5S30/G1l81eWScBz2Qq4Gvt/MrWoig0rDtHnbjXbOB16bW0HjXBKzvA9U/ATwxeaYF3BpTGAWdVqXexV3ifOtNKG0gyG52Ofy9/P1xgsI4kq+NMpDSbOgvYpUDerYHHPO8SkgHjalX8JpKoHRdRmiU2wL6XrPH8sa9W6FvDovCNWl46VoXvN8LgNf+OJ9TqfV4Bw46ES0cnY3sGWF+ww8D+BM8eljh/V7v1lLbSnq9CKy3tMi+aAbMN3jGYZMlstcjJEEox2MxbT4MLCuVCzzsT2L6L73d74IJmePSd5IGbf940+IXBwbVWAQzWMbjJ4D2NWokMPmJwtRWrOx2tr6dT3v+z3H0NNJhgMDUMKdjfwA6A+c2t/UUf8vrcFcMmWfeT5d6FLtwLOjeJrDMt1P05BkcrsEP7lWHXk0tLXeYDnyyQfShwfUYoB3Xz/Y8xOMVgug+cpxVgkVeIiVoC1XCc6vVtsde5sWXqxTB/9jdY6x9FM5jhraLUdWQTYDKlfUPSrTAnAWt1wf1n3U/e8WsN6ED9/6DBw+G7/dO0l3BZQ/Uy+LLB8hZ4ayz8nmR/0rzsQikM+XzgEzXwnUZVEL/FLn4nVHPMw/3pJhhcaPBD71p/y+Bwg+GqZf+10/ouPt92G13ugrO3dWz2ck+S9anpWHELcNvWcMQK+JQ/66Xh+a/0OnGKJXuDVGIwSXf8n0H4lriojusC02xJ64mN//j1exW0b5PBYcFFyHxMdTvVPv67YP12N0yLhyYq4ls3idK0+/0FhbK7vuNGLnDTDJaHirAiVP71O1h2L4NzvAttFT6LDb5jXb/pTi3Xs7Vc4Ja3YaeXDI7r4CU2HwpX9U5EyQDbDGwy2Jude85NJO4r02i9Qfl0H4vrVWVTfRB4OFznn3SglWbQ17/vW0Hop9bTssWuqIQHGbwe3AiKhO3eiGQ9bHu+dbX44k108VtWQfxG5Cyrj4/FxbGTiy2JCvx5g4sMng7n/25J17+n1bMNDWYGOzxkyaziCQYnGVwZ6qFZEjuu6DUmG7TMB7sEbFQQp6bE/+1KEq+DzrCZ1/O3gyA962Nxw6posiYX01m0ntjYroP1fXJo5b7jf6/Rkypgf2/JpV29Owoq/0fDGMcLwO51aodhQfyWZLo9D3lXa7M28l8Y8nzPEp/Fci3Ac4Otr82c387gT2U+P22g4ZK7/bsvsQrjwgZrGvw62PP4zPlPVbDTSX7+yDhWOzuZxJhA66jbK/3vCXTOa2CIdzefCmUvcFHduorm60vi4fBWuP+pdKCVZrCFj2Gm9v2P/+D0anSx28rg0VABz7bivnXpQ/4NXTOQuzrsEmfv3q4wsL1Vppucds+m5ij/26G8XcPxzXwcK/s5v0Hs+onwvT/dTtreBvd62nlxCMDgwxXsdHj4Ea800L89XbO+trlMd7daohpZB7ic0sTGgr/B6R0ZIjHYxeCeTN0+oFHFbmKYpXrKkoXWedmGkm/dYqrrW1drdhrkA7/XR9cFb6Vt4Gm+HrrCI3IKajqe8ose1Ju4O7xYTTnSjw/2PrbKt5Our50ThO8tOr++FpJJhymUXLIM+Je/J9XyVtgCuGE03NeZVlqY2HguM7HxrkapdEMNrgtfbmpe/yiDpnOSnecXUxpEHdeDXtj+Bgca/NzgD+H439yWdxcoa2paUXuI7QaEcdKvF8g3p4t/GNL1tdMz3d2862vbYm2SvWfjuts3+ifjZlWJ/TgH3m/wYHif/2HJPjJFn086sfFmZmJjg3qudDsHJZ9vcGSBvGsa/NJgyfuSLkC3+9bVsF3Tbu/FBfKcHCrpOj3ARjuF73tggXw3p35k3XCb5dbXPuxjdJ1xWG8mjCGelExYrfQxxr2rYNuqtdIMhvtERjqOvbDuJjZ8TeMp4Rf2ASuwLZzBHgYvpOMpL8JBkrlWrb60kp1dIN/hId/WPcBO+4fv+94C+X6Y7n3bjbe7PomLVQxRNpfECXlkJ8ve6Um4JOMP+IjBMeUmulZXK81gc5/YSCfYXqyLiQ2DkWHsJPWt65Mzb28foF/h+e+zxPtctP5FTCvuKQXyfSTke08PsNMh4ftuVyDf99KwWavhtvuRLCeLe0wsJXEKfl8n7bGeTxL+J9jlFW9NbVSFOlmVVpolXeb7wz0+3pEuc3dVsuhbN9fyh2PCYOMwNrXCDdZHElf2RyH9FTyvQL44Y7l5D7DTPuH7vq9Avqs8zwur+SuMd6Fbzqrra/t0wi59vTt6b7DPMm9d7dZJm1ellRa6zM+mble12M2KvnW3F/Gt81/jN4IDrXZNatteqa2uKJDnrNDqHtoDbLRdeKEPL5DvD57n4Rr5KiO8u1tufe3anbTRjt4FXZ5xzJ5onRPVnUPjxQyetGSipmg5/QxOyy6P9CGzHf3cdw1+ZPBNg093trWa56a29pma1LfulLxxyHwmbUowzM1a+5nLbulyvAcL5Ekda5/uITbq410rs2QnsTx5ehm86nl+VGNfqb+37qq+vtZgAx9KiitOXvZj63Si3AmhlZZObGzfyXvdx7u5lZYItvhk58ZdUamib93MIl/GYGy48cVFxqMkeJwRHu7mOdIP85UAZnBpD7JTGrbo+TzdqsxEx0dr+Kul3d0VVHF9rbeoJmYEZYm3At/VwTL7eLf21TCxcYPBqA6U9dkwvr/IyznLl1J+3ZdPxrXR46pVkcr51g0qkH9i+PV9UtEUCtt/rWC/ae21qMPM40rr/JrOerJTFLAv5XjZH/O0/7b6CN+/GclM7pu03nyq0+tr3Qn7hiAwsbvbuwPlVZrYGFLgftJ7uadS19Un5xaEILeDq1GRxrhf3XwrEI7JYG2D32WEcqAkrEPP4NRgx6vLzYj5APXkkO67PdBOvwkTYSeVW8roM5i3BTt9pM6+5hokvnszU+F7I3EFu9I6ueWov+uTfbmdhcmISR0ZfvLJyalhvP81Hwbr3U6+dFuC2e3N/hrsF8r/SrUq0n5WYId1gz3DlPhbBkdItjpl/2av0BYqzk+8u3uar/Wckxkf7dcD7TTcSsuh0mWN3/eX7BzfqnJ+GCI4u46/bjNw0N5wTSYYxS0GH+rMHh8Ga3jXdEYm9NhU60CIeIP3Gvw1lDWz0sSGr8FN0x2Ts/xbgzg35+myjvFfvl6drHBZ37p75VtX1Rf6M/5QKw3iznMR7NWDbTTIWymL2rDTU3XYsmvrO2/hE4ILw3f8lwv9oE6U2+wBU6dlgttOd1eSXgXKyrqfmMFdlqwNjunOC630vF3giaHMbSop7rVhA5Q4aHmXF9Bc0DhZ37pJPfnF68LK3cdgd3cs/b4lnvXnG+yrTVVa2WmIwUcNvmpwqbs0nObL0Job9DsPdZF7PrzT810MR3ey7M29nBi6/hmvh2sWrL/pxMay7D7JwcPgyQJlbh3u6cisYl+SUet3vK/8ekb87recG30YHBr6/XMM3q9XTojVOgQyIWxjaXF9bSe7u0NcVGeHshf4kMtWBcoZZsle0tnjf/Ey/1SgrDXDvZwaT1waTtxusGv8tTPY1CPprgizqoPauFDWt+4m+dYJUVPit4OL0aJM1JMTOjOJ2Iao3unHmzpY7gNe1q0F8vQN93B+enCv0LL737ZuyJcmpWmnVEgz1uAJ+dYJURfCt653P1/IbDE6pbOOuwbblxHVp70lOLBgWX/0/H8pkCeuOf9ievD2MNU7IEchU4MPzfAy/fB/hwW/26hKCVEXwpeur/17Zp+VToeT8n2Qz854DLzlojoqZxmpz++zBa7bemmhK2AhXxWDd4dCPlXm/L4Gl3VwyzshxOoXv3R97bKMw/EJnXmvXVQ/mYmEstxg5zaEcltfl/vt4Da0Vs7rHReuMyaN058eGJ+zkKYwEfFDVQ8hGlb40vW10Wtjrrv3bFglUf1X9Nrw8f8vtbNW9rKc1/hTOmucHvh8RyLghrAyt6paCNHwwpeur30s6MVSX3a2S2e70uH/m2S2FV3mTs4PhaGy9HNjW070mdiPp6YHzw0H+xW4yXQJzr2qDkL0KPFL19cur8b62lDumsFPcKE7yg/NpPmoz/im1/1tG2KXboHw2H+1LcRHsyLOqe6EbAZ/UxUQokcKX7q+9o1MdJJJ1oGtUw1+HMb09mgj3acyonePi+Nn/drTw7nZrSIJGRwfTm5Y4OYe9jy/06MXokcL3+Ay62vTcFLjcpaxXoigcnGO9HtnNq7PftJ9NdbPZtw9JNon5831CmvzLtIjF0L4ZGaH1tcaHFt0cykP+pDmucr9/SZ7xOMRlTINCjsZ5Y0Iu2edBEgUQqwe8dvMfezeDlrxrPviDSuTPt1D5LUC14jRUw4qcnOpQ9+rliNgYIgg+6p87YQQbWjFmu5iMjsTtODMTLo/FJ0E9QC4rVdR5My4Q3Aw/E2cJi6T9qRwkbP0SIUQOTQmG07qC5nzqZvbHQXK7BO06CtFb+jczBTzgemsrd/sezIRSv+sEE9CiA6I37uyIdfDHtZFIqEMDJp1Zkdu5EuZncnT9W4rMsd+pZDsQogqimAagv+xAnk2Dpp0fEcvPMbj4j2VEbqXPTDoB/V4hBBVFrxvBXeWPjnzxGWxu1brRoa1NaYnhBBV0JkDgnjtlzPPFWGrRk2eCiHqRvD6+CoNM7gzR/oNwzaMP5YFhRD1JnpfCK28r7aRbnDY6Wxhnk3ohRCi1gSvyeC3ma0mDvBlZ/0NRvtS2FkhLt5nZDkhRD13bX+UCQ5Q7vNmq13IhBCijoXvXe4t8rjvmrjcx/ju9jW0a3Wk3P8H06aj9rwV6FIAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NTY6NTgrMDA6MDDDAFFtAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjU2OjU4KzAwOjAwsl3p0QAAAdl6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI2NVMFu2zAMvfsr+AMyREoUzUMOSdx1Q9cE6NL+wQ677/8xUYErGg08K5Eg0e+JlPTIAay9zS9//sJno3kYAOLGX1XhI8UYh1ewCZyenn9c4Hw7nhbL+fp+uf0CIiCsnPpbY4+36+tiQbhCGikXRoaAYxZBUYhjbK1TCc6Ao6bMpUCIo/D9+xdg8sANXG6eY0IuWgkiKZI8wHHFxZGj6IQVR5iY2OHg/P35EBA+jj8PuJCKJ4W9LIFvv+1sSVJRsdkCX/MSvB3nAzVyWchTdWmemJPwfp9aryvQWCZU1s2LxbiCbiHtVUMaJ+U8cb20krDI9AhJq6j3Bo1p5SBsebB3tjutHqamHKSU0/9dsJ228jKzmC4Sokh+5KGskGELKl50YUN1OK3C3h21+nzaSqcIL91MXwNp2993D5/b13x2rLSXRZ6Vd7KeLvOqUtxrx+l6mXvtIOu9Qpgh9TpQF5B7umNdcs9qA5eer1q79ETUmk/SUwtr154yaN0nBtmA6BIAm4Wc0MlIyUlYTZzihIptYCdBbENxUiMbUJyisFkmpxxqLHWi0HpgcW+vFpC4Z1Xjib97f9O2Xip8nQ//AES8LlZiAq1yAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAADtelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVbZAxbsMwDEWvktFGRELUF0WpbroE6NLBBzDcLbfI4SvHseUGWYSvz8cviuPlKtNIM31N37cz5oDukxbjKpex33RX9eNY0dC/98HTz3lux+negUNMGhwJRzPJbhAuiGqOPJu6wbN6K1kWIggUbqgVGFIx5w/1vbwFrP1gD6k3YTP4pbuCqrDWQIFTlpKeHQTORWOuQIKkfADohaCGbKn/x6xWXnIlIEJXL6ra43sQMYttRGoz7tiRWje1L6rlU3vAu7CFeIcm41P27lc+cP8DTYViZn8EAjcAAAAASUVORK5CYII=) |
外観 |
---|
フェリオシュウ酸カリウムは、暗緑色の結晶性固体として現れます。 |
ヒル方式による化学式 C6FeK3O12
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |