モル質量 of Na3[Co(NO2)6] (ヘキサニトリトコバルト酸(III)ナトリウム) is 403.9355 g/mol
Na3[Co(NO2)6] の重量とモルの間で変換します
の元素組成 Na3[Co(NO2)6]
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
ナトリウム | Na | 22.98976928 | 3 | 17.0743 | コバルト | Co | 58.933195 | 1 | 14.5898 | 窒素 | N | 14.0067 | 6 | 20.8054 | 酸素 | O | 15.9994 | 12 | 47.5306 |
モル質量を段階的に計算する |
---|
まず、Na3[Co(NO2)6] 内の各原子の数を計算します。
Na: 3, Co: 1, N: 6, O: 12
次に、周期表の各元素の原子量を調べます。
Na: 22.98976928, Co: 58.933195, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (Na3[Co(NO2)6]) = ∑ Counti * Weighti =
Count(Na) * Weight(Na) + Count(Co) * Weight(Co) + Count(N) * Weight(N) + Count(O) * Weight(O) =
3 * 22.98976928 + 1 * 58.933195 + 6 * 14.0067 + 12 * 15.9994 =
403.9355 g/mol
|
化学構造 |
---|
![Na3[Co(NO2)6] - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEECAYAAAC1LIjGAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETQjk2FYKQAAAAZiS0dEAP8A/wD/oL2nkwAAMatJREFUeNrtnXeYFNXSxn+7LCw5S1REUVTACAbAgIoR8SqCKIZPUTFizsoFM9druJgQAypmFMwRIyoYMAtGMAFmFJAgqb4/upo9DNM9Pbs7oWfqfZ5+dqe7TndPnVPvnFCnCgzZxPnAPD1OSyE7VeWGmNoMBkMcMQIQPRYB7UNkp6vcqaY2g8EQd8ITYGKWCW874FegpVWFwWDIFuG9DyzU//tmkfB21Hu2saowGAzZIrxnnP+/A+pVgvA2VrIcChwP7AHUMcIzGAz5SHh1lOwE+E8ahHeQ9hAlyfEHMCBBfnPgdT0+VLmpzrkOVi0GgyHThAcwSD8vB7aMSHhHAEuAR4CzgcO0l/eWyi8DOjvyLYFj9RipMmc555patRgMhmwQXgkwWc+9BZRGILyaQMMk9y4DvtAy/7UhrcFgyDfCQ3tjy/T8cREILwy3JLm/EZ7BYMgbwgO4hoo5uKYRCa8Eb+GiD9683QAd5or2GpNhQ+CGgB6iwWAwZIXwGgCz9dqNKQivFDgT+JHkCxdhhGcwGAw5Jzy0h+YvYHQOIbx7HLknlPyOiNjDMxgMhrwgPIBn9frTAYTX1enF7R9yfyM8g8GQ94S3MbBUZZYkIbxj9dxPKe5vhGcwGPKe8AAuZc35OJfwDqUi8EDjhHKdgR+M8AwGQ5wIrw4wM4DwmgPzqdiPeyretrK7tWc4zwjPYDDEifAA9g4gPPD2zP6a0AtcAYzB20ZmhGcwGPICTfB84VpFkG2vso2SXKsH7A4MBg5OuN+GmGOxwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMcYVAE4GTBSYIvCfwlcAUgXECgwRqmZYMBkMhkN3RAvMEJOSYKbCjactgMMSZ7E51SO19gcMFNhJoLtBZ4AyBuXp9iUAv05rBYIgj2W0p8I+S2TiBGgFyzQU+UrkfBRqY9gwGQ9wI734lsW8E6qSQ3VRgmcqfatozGAxxIrtyHaKKwNkRyzym8m+bBg0GQ5wIr4czd7dNxDInq/w/ArVNiwaDIS6Ed6hDePUjluntlOlgWjQYDHEhvBOUuFYKlEQs080hvK6mRYPBEBfCO8Yhr7KIZbo7ZbqYFrNeZx0FhggMFxgpcI5AH4F6ph2DIdx4+jnk1SJimf2dMm1Ni1mrq24Cb4Y4hf8tcJlAuWnLYAjuLfgGs3vEMher/O9Rh8GGKtfTfgKLVe8LBe5RZ/EhApcITHPq8bWo87EGQ7EZUomzg+KGiGV845poGsxKHXUQWKA6f0ugdYDcYIHlKneHac5gSG4ol6mRLBLYIIXsPk5PYi/TXlbqx3cMny3QOIXsOTa/ajCEG0lTgTlqJB8LrBsg19MJLvCCDWezUjdNnG1/p0eQrynwi8qPMg0aDMkNZUeBv5w5otECR+oCxXECj6jrigjMEGhjWstKvbg96g0ilrlD5T8yDRoMwYbSRSe8g1YBVwqMFWhq2spanZytul+Qhp/kUC2zzHrhBkNqg9lC4CyBUUpw12ovbz3TTtbr4golr+/SKOPunrGINgaDITaEN9IPvJpGmYMdwmtiWjQY1jaSaQKfCLQMuF5PoE3U3RiGaquXC5S4fkujzBBnCqLUtGgwrGkgJQJL1UjqBMgM0usPmsayWjeHOL21ZhHLXKfys0yDBsPaBtJEDWR+iMwZKvM/01hW62Z9h/AGRCzjR6W+zzRoMKxtIJuqgXwVIuPPJV1gGst6/fj7ZyenWnUV6OUQ5D6mPYNhbSPZWQ3kjRCZu1TmGNNY1uunj0NiF4XItdUw/aIpNm3+zmBIYigD1EgeDZF5RmX2M43lpI5udkhvgvbk6gmUCrTTKNQ/6fV5ApuZ1gyG5MZ0ihrKzSEyfsCAbU1jOamjEvXJW5Yib/DnAp1NYwZDsDH5wQP+HSLzo8q0M43ltK46ClwpMFXr5HeBL3Tr3xHmNmQwpDai25TMjg/pXfhuK5a0x2AwxJrwnlAyOyDguu+28pdpK2fD2Zs0pLvtjTUYqmhQbyuhdQ+47rutfGnaykn9NPcXI0JkjhGYYqvoBkNqg/pWDWrDgOu7+H5gpq2c1E8nf0EiROa/KnOuacxgCDeoRWos9QKu+5vRHzFt5aR+dvVzVYTIjFOZo0xjBkOwoTTwM16FyPjx1W4yjeWkjvz9tA+HyDxvuysMhtTGtFGq8EMCl6dyWzFktI5OS5VkSeBDldnGNGYwBBtKTzWUKSEyoW4rhozX0ZURtpXNtTzBBkNqY/ITcT8WIhPqtmLIeB3dqfo/NuB6ie7AWCVQyzRmMAQb04lqTLeGyIS6rRgyXkdPq/77Blz33Vb+MG0ZDOHGNEKN5ZIQmVC3FUPG6+g91f92Adc7+9nkTFsGQwiu4vzhk+j92pP0PSrE4ELdVgwZJ7wfVP/rB1zfTa+/atoyGMLNaaIG2uif7GpzfmvQjwkfnMfIV0xXOSO8JSnC7/tZyh4ybRkM4eb0lhLeTgHXN9LrM01XOSG7xhHC75+uMqNMYwZDuEl9o4TWMeB6T70+xXSVE8LbJEL4/atSua0YDAbPXBYooTUKuN5Prz9musoJ4UUJvz82zG3FYDB4plJHyWxJiMyJKnOr6SsnhBcl/H6o24rBYPBMpb2S2fchMiNU5hLTV04IL0r4/VC3FYPB4JnK9kpm74bIjFaZk0xfOSG8KOH3Q91WDAaDZyr7K5k9FSLju60cZPrKCeH5+5hPCJFZGua2YjAYPFM5TsnsjhCZFG4rhkziVXrd/iUdf/iTxkHh91O6rRgMBs9cLlYyuyJEJoXbiiHDdfS26r9Hsqtncm3H07n+9TEMedJ0ZTCEG9ONakynhsgsDHdbMWS4jmap/jsEXN9Zr79hujIYwo1pvBrLwIDrEdxWDBmuo7+1DuoHXB+g1x81XRkM4cb0uhpLr4Dr7VO7rRgyWD/1Vf+LQmROUZmbTV8GQ7hBfaHGslnA9QhuK4YM1k8H1f+sEJnLVMbC7xsMKQzqTzWWpgHXI7itGDJYPz1U/1NDZG5TGQu/bzCEGEo5yCqQZSAB2eyjuK0YMlhHB6r+Hw+ReUJlLPy+wRBiKOupocwOkYngtmLIYB2doPofEyIT6rZiMBg8Q+mmhvJ+iEwEtxVDButouOr/0hCZb8PdVgwGAyC7gPwE8kyITAq3FUOG6+gW1f/JITKLwt1WDAZDVIM7H+RZEIvCkRv9TwgLvx/NbcVgMBjiQXhvpgi/H8FtxWAobiM6DGSaHkNSyN6lcgGRdKW3t+ghtU2vGamrr1OE34/gtmIwFLcRnalGIhrefd0Q2SkqNyzgel+9bmGJMlNXqcLvR3BbMRiM8MQ5HjXCy8t68vcxLw3xk4zgtmIwGOEJyFdOJJQ+0QlPdgB5UY8P9fpLzrkWpuNqqaf2EcLvR3BbMRiM8EQnxC/R/78FqRuR8Np7bhJyshP+/XTnnLlHVE89RQm/H8FtxWAwwvMJr67XgxABucqGtHlVT1HC76dwWzEYzJAcwgNdtRWQ5SBbGuHlTT1FCb//poXfNxjSI7wSL1quHzXXnSBPSXhbeBPmUtP0Wu311BSkJ0jnEJmPtH42NX0ZDJEID0C6aNQUARkcnfAMeVCfdUFKTQ+GeDZfLwtVSXYJD0Cu0/O/VcTHM8LLQQvoDXKeHhumkD1Z5QJ6gdIr+dyswZA7gusgcIPAFwIr1DlulcC3AncKbF3FJ9QA2dVb9QslvAa6a0JARhnh5axF3OD4SL4W7IMHIHNV7vCA66eC/Gw6NeQL2Z0hsMzxAl4oMEvgL+fcKoFrBUrTvPdOArdfyrDn1vTGDyI88KKirF7A6GSEl3PCE29RyQjPEH+yG+q06ucEtnOHsgJdBB50ZK5PKN9AYN8kx1Z6faSA/Mo6H4B8WZHzIIzwAOS5CncII7wcEt7v+vdnkCbRCU+2cHwiH9Htaf7nk0y/hlwNY5cokd0d1nvziUt7ejslEOKKJMcDen1zgX8LdEm4YyrC20S3MwnI/DUJT2p5hyELhHefFxRAxHPwjkx4Bzi7Xr4A+cf5/Lzp15ALwrteSewXgfopZMsEpqv8E9Xw9BSEB15I9zWGVT7hXQPyideLMGSY8O7VIK0CstLb0mdDWkM8Ce+7ZMPUEPkzVP4fgSqGYopEeHWcjPdKeFJX998KyGIdIpVYbWaS8MCJOv3J2v6ORniG/Ce7Vk7XaUDEMts6ZbpnnvDA2drk9vDqeiu4q8+/CNLGajWjhLe+E8b9rDQJ7xiPKA2G3BHe1g55bRuxTDOnTL8qvkE79fXqFkF2F5XdIOH8geqv562LWIrADBIegFxUEcpd2kcnPIMh94S3k0Nem0UsU+6UOSpPvklLXcn1X22cRUrJGOHV0gUIAZlohGeIE+F1c8hrm4hlmjhl8igyhpR4YeLl74rcCrKj1XJ1Ex5oT9tvBnsZ4RniQnjtHfLaN2KZTk6ZXfPwW23m5bdd7bQ80gIKVDfhAchDem06SJkRniEOhFci8LuS17CIZY5Q+ZUCjfP0m9UEGQGyQo3wHZCNrcZT6m1HnRoYGIHw2ji+kSesTXjS3tsiaDDkF+k9rAT2aZRAAQLPqvzbMfh2vZygogtgxWCr8bV0VArSD+RtZ5j6RmrCA5AznB0Y8xII72XdoXGeZZIz5BPh9XKGqINTyO6huyxE4IiYfMOGuoghMPFVYCLQ3GpeaoEcCTLDIbrftGfcLCLhlTm5RKSC8KSRExDUD9t/hIWOMuQL6T3gOBMfk6ynJ7C/wHyVey3dAAK5x+wBUPM376swF9irSGu7AchpID8mENJpa+cSSUV4oIFBV61JeKuv9U4gxOkgA8ziDNkmuFoCfQWuE5gg8IrAz87P9NcCtwpcLnCTwEfOtQ8EWsX0q7cDXlXSWwWMAeoVSa230N7bPIeAPtZeXllAmQiEByBjkxPe6iHzAJCZjsxUz6/SYMg82e2tYZ8kzeNPgUsl/gRRApwGLFXim0FEl5yYYhOoMQZ++8WpzpdA9ozQWvbXVe6BKeTWUbmRIFuHDKGH6Hyf/x6T1s5dYjBUH9kdIrBcW9uPAhcK7CbQVWA/gf8JLNLrCwQuEzhcoKdAWYGpowvwsZLeMmAEUKOAvt82wDhghfcdD31F98J2y3ErrK8LGfOdYATjU0dUNhjSI7uNNKinH/OuXoBcR4HvVe4zgfICVkttYCSwUolvChB3w9sReEq/jwD/KPHlWXIdaa49Qj/81z+ahKllFm2iocABAiN06uZ6gfMEekhh/fgVJeHdriQ2R6BRCtkezmrs/xWBenoDs5Ug5hObFejVKAX6Au85RDcfGAW0zfOW2U6JzveZXKhE2DCDtlAmMFxHMUFTOF8J7G/MEU+yqyXwd5oOxi+r/CtFoqbGeAFLfcIYDzTN83euBwwBvnLe+2cdnjeOWSvt7ISf8l1kzgMpz4AtPOMQ2zsC5wsMEvg/gWsE5jqBbk83Bokf4W1fiagoZ6v8YoFi2pp1JLBAyeN7oFeevudGwO8O0U3HC+YQ8yjQ0gNkMoi05OffV1I6XWBIdQ0xBf6j7XqFeD8WyWTqq/eCL2fJxWNGeIMcwmsQscy+Tpn1i0xlHfDm8wS4IU/fsQT4FJimJF1Ac05SAnLgy+z2SII71N5VtIM2TqKqS1PI1nTcsaYYi8SL8E5yfq1KIpbZwWlsxeg6UAacCtTJ43dsUuDttlRgQIIb1VuV7XHp0FV0eqdBBPmDnOd2NiaJT8M5wdnwH5XwejqV3cW0mBSNgc3xDLAzUDcDz+gEjAZeAx4HzshzEs5E+62lw9pfnDY5SWCLNO/jz909FVG+ttMjPNGae3wazECnoTSOWKavU2Zd0+IaQ8mBwFRW+7itPhYBD+uQuDqwL7AEeB64DLgLz2H6NQrPLzJKm6yvbiMLnB/w8QIbRCz/rZa7Ko1n+kmrbrSmH5+GsqVDXj0jlrlA5f+K377ZjKE2MMEhuBV4zsuT8ObTVjnEt3s1PO8q1jbOU/UZ2xVxe15HU4YudfaAjxFokaKcn1T+3DSeNVnL3GfNPz4NpIZT2VdELPOmyj9jGlyNOx2yGwskOsmuDzyt16/K0Dv01/vvae2a9ZXoVmpbXahE2CBA3g9+cXbC+ZaaW7lzImlqoAzxcywb4tM4btSK+1VS+JcJ7Ow4Hh+U5HoDgecFuhWRCns6ZHdLiFwZVVxNDEEb4B08vzuLMVfRHrvo0FacbZEzEncJOTuILhNoLvBfZ5jrHrMErlaZj/XczabpeDWKdk4v76WgpNu6tewHxymzLInMlc5qV78iUeF9Sna/U7UACtsAF+DNCV0PDAXapyhzHDATWA58psTnoy6wXpKjQRG28TOcveCiEYCG+FMyAq/6zvQCfzhyc3ToOtlxOhaNBr5E/zcH5Bg2iAOdVacfdZ5uF4FtBPbRcFGLnEawccB9ygRucbzRRxSB+n5SwhtTyfKNgSdZc5HDP5bh7ekNmivtBBwKXIy3k+I1p4d3eMA9Lyyidr1xQg/vpwTiukrlrnDarAh8LrCr67mgaQ/2FPgmode3fYIdDU1y1DGWyb/GsZvuEwwLBTUpirOxwLnO/MldnZleq0DV1sohkmMqUb4GMFnL/wGciWdAOwHXUrHaG2Xer1fCezTES7GZeDQrgrZcXzf+L3VGHCPUnaRMe3ffiwZO0Dk6caZ2mofcu5XTu/s7gRTvEfgiydHUGCY/G0pNdTv5n8DjSnDjNd7d9mneax+B+U/T51WQt7xAkwWHLg7hVSZS8qFOTy5Z7L2TqFj1TeVi0Vhlry7i9lsqcKQTtHalwLhkgWndLWkJiecXhDnUa4/N7QRsbsxhAOAdttuylJV+spxvvFSJBYXtHMLbuRLl/aHswwHXS4EfVOYC5/wZrJ1n5BCVK8qERJqDxY3A/bbADhHLXuQQpN9zu0yJsKFAC4HdE4bH/hTQeWbpxdHAmkcL6S6tQd6tyBAmfQpIDZs5hFeZFdgfk5BZIp5QmUecc1fpuReA/yphLsPLGFdsuy02dDb0i66uDkjzHo9p2ckCr6eY1lmmgQZ8t5RHjQ2KY+j7qsBsiRQGXeqCPOIkwT4w5irwo8Q0dwjv+ErcZ7GWDYuzd5PKJIbj2gVvoeQFPKfnUyjsoKyJbaoeyIjB3On7hS7Sebo6abTjUoH+AlP0Hnfr+T0FRmsvcaYuYryq999YZe71SdIYofAJr6njgLxQvCCTqUqVaLKYWTGcz2uD12sYhReF5B3n2ndKSHdX4r5/atmw/Zj3qMyz1vJAk/8c7ST4XvUxW1wja7rkRGnD2wtM1Tbsu1uNTqP8rX60FquT4iC9cl2VStMFJe+zzpcDPfC87h8DfmFt146FVMSXG0NFJOF0g2v6uTPCVmFfV5lbrdXJdiBTnBHmu16cvLTabfuEubjv1RlZxPtxiXqf+/3UpFYvxUN6JTrhu0pAbmDoZSApgoLKg5qV6qnwcN3SSeUmBWeol7Egw6r4LVrAhfvgrW6+SUXWMvf4WcnvbCVDd+i4FRW5L8YRMeqMYpSW+4zkvnZt8HJPCF5ggmJtaW01abqf53a2ppEsSaOt1tUh6WJnCDxSXVgm6rmX07ifv5f2YWOC4iO+/tPo+oo2xldAQvyO1kj0PCpErrsjF7CDQV4FGZ3m226oxjJGE0Cvgm/fTiC4mUpeQ/DCO6UyrOucshPxog67KAP+pdfc77KpQ2jXsGawzkZ4BijALKdH2REvR8UQCn6BQupqOPeF2g4Wa16LBmm0zRKNnfe9MxoZ7/qTOgEx5kWJ4q2jmwXJ9t8aiof2tgL5wXFB2TQC4a0E2T5zhCf1QHqBXAzyTEKyaf/4GxY9jhdmaR8ql/OhDLgjgTS/whvufIIXysk/n7hAcRIV0VRmAffircj+4QyVuzvy1yb0PC8lzfmrGLSlEk3S/Z1TT0+BtE/zh3hbDQzq3+Q98bK3Jcpt5cgcEOG+hzjkuZnZfvGSXhuQadp25oHsFkJ40/XveyA1ohOeDNekLuNBflVy9T+fqTJH6n2XJyG4H3RYPRSkK0h1xo/bEy9G3eIE8luuvbKzSb6XdU8dTrtx9Bbjrb4m/nCU4y2gTGXNcFRP4WVZi3sb6gYy1amv90B6pkl0bROipcxx984GlHndyUrWKESuqRNY4AWzeSO9eiCPa2P9yFtVS0p4g0F+1/+HpkF4h4NcpMcskHeczxqwQIZquRVKrGOUBLMVjrsW0A7oihf0M+rWuvrAJni7KqKU6apD72UO+X2gw926MW0/R2rdzQUZkvzHMHgIvBfPn+Xs+14scLlECOog0MmZ3/tAvLnZRJmuAp84zskbmb0bUNeBEcmzxq8mvINATtH/53sT09U1pJW2Xu9S6uVQCZsTfQGjqjliW+F5/M92iO9PvEWRmCVakhL9waqfZrm+IN+CyA+s947AU1EjHjuE1jshJ+2n6tQ8QZPPizPXt7PZuSFKs3IJrwbIx/r54eqfw8sZ2umQ9G1Sx6d7UefwNqymnuUA4C2H+FY6w92SAmxP3UDedNrK+62ZW+n0iQLrCdyhpJY4H/KH+t/lYs50B7ycyOPx0m6G4XSVOz6L79feeb/zU8geonLDi4zwAGRXp03tkybhDQM5Jg+/pB8jL0o03HGk3l5WGXTX57vD3Q+h7VEgBbC6K611qmKFtpHfQU5LbwgcSnw1NIDornp0ltymvOzPmjlSwnqvD6ncbVl8v60SfmTD/CMvJ/nuoWIgPAC5X899V0FuUQgvL7G1Vvg/REva00cr/6MMvU9LHe7qvt0xr4H85bkEpbfqmSftp5YS23xtG8v0uzQqcMNxCS/VzptMEF4dPJ/DLSIQnuDlcqmZZcK7nfxLcZCU8FqrEQrIZTEnvJe0Mv8TUb4mXrRkwQvomSnUAg6DP59y9LoCZILnuhMLsusLMjPBVaUDxQGf8OZRsSXxwCwSXiPCw6C5hDdL/56TZcL7DTg5BoQH+qstIEu8nkcsCe8AKoJ5phP00ffhG5GlOuiqw8HFjo6/0DqIqGs5XZ2ALw/eCQMg66jcyOBemJzgrcgG3mMzkOedd/18zemPoiK8H/DmyPz/G1SS8MrxAiFshhcstjoJ77AUQ+8ohFdTy3YmetDaWBFeDZAP9dr4GBJeGTBdK/KUNMvuoeW+yHJdtNCdDD84up6vQ8QUK5yrF5vEW5EPlNvEkVsvQGbC2otWq69t58zT/QZyYnXN08WY8OoA3+rn69IgvLbARdpOV7HmnNsUvEjbiaQ4XI8rqdg+6Z/bPIDwagNv6P9PpkF4TfByubzH2rmdPyVJ4jDtRfrvswgvO6D/eZc8JjwA2VZ3XwjI2TEjvKFaMV8SYXtSAmrg7ZoQQqLtZrBOaurOhkkJu2Am6TCyJAXh/ROys6aKhAcgL2uPtDnFC5fwUOP3nc63jkh4ffX8ArycyXfrvNwcPb804V518Ra+HsDb/eOTlH+uZwDhlet9fNI6ICLhdVIiXooXNONevAXAr1V+Fd4WTRdjnPdZqmTpfz4ozwkPQG7X63/EiPAaa3daklRIVNys5a/Mcf1sk2S4+6UOd+snIbxf9e/LAcQYQHjS19sZI2fqvT50PvdPuIclfF+b8KBir/XbrLmLJIjwSpUEEp3S61ERuef+ahjSljtk5L9z/YhD2v21p5c4enpKy7xTIEPa1deb6tBFYkR4V2tlvFaFe+xMxYRvHvjLSQvdvTLbqYc/QY5KILwLnBXTw9MgvAt00eEpkJ9A5jifLzd+i0R4HamI7nNimnN4iThDy3xTjYTXFPiViuAY6czhJSNCv0dbVkCEByDHxYjw2uMFB1hF1RKQl1KxU2K7PKqvUu2N+cPd3RMI7ziQC/X/X0CaVP+Q1hBAeFAR7v9PoEWahFeuvakmeLlQ/AW3ZKiPF8asRxqEB14WPX8/+RZpEl6Z8369nPsHLQhOxnNqjh3hlSYEesxnwntQK+HeariXH2bq2vz8qrJ5xbB1DcIrB/lKP99qhJdVwqtLxQLGbREIrz1esvevqYjj6B5/VvL9ggivBG9BxCW4MMJrDlyBt0ixnOS5leM0lyv76QT5uink2qvcgGqOaFKd2E57dkuonj2r22uFziEkskee1KNDeABygLPY0T1NwrsV5CbjtEoRHlS4Q/kLGEGE1xsvWrcfjedFvFXXMfp/JgjPv+aTV78QwutCRWL7ZXgLF/fp+z0aV8Krkf7G8LyFv/RenQsN3+g9d8rzekwgPAB5Ws99UhH5OgrhGapIeFAxqf9qAOHVpGI1diJr++/1zyDhQUV075l4mfaSEZ7fE3wbb4dQ0P1jRXj9NFbeaTFvgL5bwK+ExE+rBPw5mTzv8SQlvA7qOC4gZxnhZZXwNqQiDuPcJIS3tUMYG4TcP1OE19B5r7lJCK+hU36PFPePFeG9pY3/lBg3vlp4EY1TZRyrSsP5leDVqDwlPNCwYH4O4tZGeFkjPIB/s+Zc120J0y/++cTppBLgzgwTHsCghPdzCa+pcz6Zw/CFMSQ82daJhhzjYe37Q2DnGcCMDJHSDK3YPI5gHEh45bpNTdSn0ggve4RXjrdbJxnh1aYibcBzwLZ4wS0OwFvdzNSiRSJeDiA88NIhCPA+nptWezw3mMeI56KFjNeGf2V82500UafoVfDE3hl6yCVasbfHj/AAZE9nAeMQI7ysER5UbFNMtmhxEMFZ+fbHWyjINOG5voOJhLcDFYER3GMBcCQVq9FxIDxprzkmlqVeoc3r73GtGu+rGXxIJ69it/ogddrLfCQ8AHlUr39lhFct2AAvdP+gCLIDVTZZVOaNgYvxVmfHqpy/gHEIqYOLBqGZ3msIqeMG7q1y+yW51hpvf+ydeHmCz6BiAWNfLVc7DkRxvTb6e+Lb5mQDkKXac+ma2Wf9+qzqa9+YEt66TnpFIzxDMUEaOvHuto7x93hEv8NdWXjWRfn9A5GK8ADkXCM8QzES3jna4F+K8XfYwZu3k8Ug7bLwvA31eQvyMyR7JMIrS4iqYoRnKHiyKwP5Pr+HZym/Q4mTKObSLD73PX3mgXmoEz8AaIp9v9ItdQBQg6FwCG+QE1E3pmF+ZKCzOb5hFp/rxwR8yNqRwRAPsnhHjfbYmL5/LZCvUw/fMvLs9XRYuyh+fovyL5D7QHY0GzAUC9n1coJExjQ14Ope1ozcBDFYPZQeGDO9XbNmUiaDofAJ70lt9DFNuLvayVhA9s7ROwzV50+Mme766ntPNjswFAPZdVR/taUgLWP6HUZVhC/P2Tu00iQ2S+M16S+N9L3/Aalr9mAodMIbrWRxW0zff0M11pVenoecvssrqssjY6bDD/S9dzV7MBQy2TUF+Vsn3DvF9DtMVGO9Iw/e5Xh9l2dipsPrU6dxNBhijnX58dx4GuhqQ+3uOBnnwb5faa57kJeBNIuRHg/Iwr5jgyGHTRzKBeZ8T7t3dmBqrxh+gxInZl8eLbbIc7lxjalyT9+fx61t1mEoRMIbrPuIPpa8SDeY9jcoBRmi8095lDxIjorn9rzVW8t2NuswFCLhfayEd4Rpo1o121DDp6+I16q33KCEN8zq0FBoZLeXkt0c8cKg58ub7e7s50yRO1bOULmAHQLSA+TeHH2PJ5Q8To5Rqzgo/oEjDIbkhPeiEt75efZmw52IHZ+FB9WUT1Xu9IDrg7xeVk6+x6D4OfPKOs4CULlZiaFQyK6LwCqBReJFP81XwhOQ82NKePV1X+2H8VoEkM9Upz3NUgyFQnh3KZvckIdv5xPeT/p3kRe9OCrhSRdvDkqGaRDQlc7nYdklH2kdw9Zxs+r0QrMUQyGQXQuBJQIrxcuElA9v1SgJ4T0H8ljF/5EJr6cXokkeApmiQ7SHnCMLq7mykRdWXrqGh9mSUkcu4L1k09Rx7Kr13Q9Wnb5g1mIoBMK7XHt3E7L85CZq2ANAzgMZAzIJZK6uaJYmIbxNdMuYgPSPz5BWnnWG5CeEyNVz5HYIkBnlRWHJ2ru3cMJc1TKLMcSZ7OoK/KYW1qOa716me1r38IxcrtEe2idqPBJyLPAMLZHwwAldNHftDfmxILz5IG3iQ3gA8nn4OxkM8SC8k9S63q1k+XKBzdoyu4+GDb9Je2Jf6VaqMFL7DeRtDTR5CcgR6jaS4Ke2FuE1dObzRqVJeH08ws0Z4S3Xv/enR3jSWAOKrgdyJ8i7zudWWXj/W/WdzjOrMeSatGoJdBcYqDsl9hfYJEK5EoHP1boGhMjVFthQoK/AeQJjBCYJzBRYISA7MXlGAKnNA5mmSbxHehFDpKtnwJG/4fC15+3kCCdZ9PbRCS9nteQT3t26VUtAeqdBeDeE/HB8lYX3PwRESlj1rFmcIVdEt47AjQILAyzhGyXA0oDy/1K5bwXaKGkeITBC4D6BqQK/Sng3bZnA1ycw+jZdzTsDZH+QztW3+pmU8EpAXtPz7zrzfflOeCNArnOSXNeOSHhlnqzU1l70W87njM+r9WNC659oNW0VJT8JlJn1GbJNdpsJfO8Qz/sCtwpco2T1s3NtvEC5U3YvgZHO3N3SFKS2WOBTgcf1/icK7CnQITuNPxnhgRe6avWweXCMCM8dko+IxxweCHylL7atWaAhmw2vgfbeRGC2wM4Bw9zh6kwsAtc7165PQmrzBKYpOY4UGCLQW4eyOc5WFkR4AHK1k5GsUTwID7yoKSI6vN00Qg/v/3Ru9FgvKGtOCO92fbFzzAoN2Wx4vhvJEoHNUsheqrKrBDrrud5OkIB7829nRVqEVxfkW71+RYwIr1QXbESH5iUpCO855/wKkKm68t0yi+3ucH2Bp80KDdlqdGUCv2jD+18E+VqO/I16rpnAPwLLBdrl0bcrBVkfZDftAY1UX73hKZyND3J2YPwcD8IDTXK9Us8floLwmuiCz1OOH6K/aPMmyGkgbTPc9tbVh/4lUMOs0ZANwtvaGYb2iFhmtMrPcM5tInBMDr5BTfXN661x60bqCu40DSufONrePjXhAcjTCeViQHgAcoue/1nn9qLM4TVWZ+1xSXQ2XecJN85Q+5upD9rGrNGQDcI72hmi1o1Y5linTBbyy0p9kC1B+oGcozsoXtKh54oUvnlzQd4AuQvkYpD2EQmvg+7OiBvhNdH5RwG5MhrhrTWk76vktzCA/DapxvY3Vm9+plmjIRuEd442uAUp5HoKXCfwhsCPjhXcLNCtGt6jmcD2AoMEhgncfTRj73VWH4OOFSCzdAvZaE2UfSDIFiF7RyMQHqhxx4zwQBckRAm7c3qEt8Z96jjkNz+A/DarYr3/n97wCbNGQzYI7yJtcL8HXG8i8HQKN5NVAg8K1E/xrCYCXQUGOA7Hbwr8mey+Yxjymv77D8hMJbUxuk92gDocV6KHKT31HgenkKutPcrzUgcKzSvCK/ES5Yg4QUKruI1L6mgSnntB/kqoqk+nssOZAl0q0f7Wc1b1S80iDZkmvFN837kk1+oLfKLX/xG4QZ2JBzut/T6NiiICb6s/357qW3etwLO6+yKVb958gQ8EHhG4SuDYBzh0R5B24dFAirbmng1PeSibO9vOpHr3rUoNLwK0jAL5pQEL/lbfShGYJTBKYMeoOUwEvtOyW1q9GjJNeAc6FtE24doYPb/I9c3T3pnojoxSgX4O6UU9rlK3hO4C6+Spdlrobo+J8SM8ALk2Qe27entupb83V1ct71HzCMbtJnBbkl003wj8R2DbMPITuFvlTzOLNGSa8No4DXRgwvllyRxDnSHuy865J53h7YeOw/FZAgcL7KBRkP0jBr02aexM3G8RQ8JrADLb4aBhzv9L1CXlSG81t1raUqn27EZpHhOX/H5wen6lCeX8hbOJZpGGbJDeFG1wLznnTnO2gTVyzrd3iPBE5/xGTi+vgDKUyY1qs7fn2XuN1XnNFL0i6a9yMzWs1pm6b3ZlAvk9oeTXuJralE9+I51dPP7xq8A4DR5RprtvROAPm8czZIPwDnIa4xA995B+ftORKxd4Wc//lLhIIfCFXrulgLSzkZM8umUBfa91HMfj5Qmr3r7jcctqbGOdNYjEVwnk97uSnz8c7mIWacgG6T2oDW6lup+8r5/HOr/WUx2ZPknu8YRef6bAtOOvdP47D96lH8jR1XzPZg75LQsgv9bV2Na66Rzu10nmdt8S6J2kTA2BHgKn61bIywROFdjOdmkYKtMIawncExAEYL7zeaHAQQH38Mu/VWDa6eUEFMhhdjBpBfK7vsu+GXpG02xuOXN6fu6c3+MJMkfqHGDQAthMgYPNig2VaYC76oLDioRG9bnA1QKtQsr6w+BXClAz76oqjs7hO0zUd3ixIjhARp/XRJ2Yn3KCjK4mv0N48DiB9aqp3W2sN/9bYD/n/HVOG/xWXZ1OEjg5yeLIJWbBhso2wFf9X9uoMeoEXspN8p6saMSPiPxpdshmrecfrc//ywvDnvXnr7Xl7FO6vKn1PV17aR2r2OZ88uqkn49yyOxagVpJytR1UoKKQD+zXkNlGt8Nfs8uonyJM/E8vAA1UhPkx+BQ6hl9dlsNbS8gh+eBLuqBHLyIundrj0wSAsdeUBnyE3hAd9300QUyP+js+Aht72XH8dnm9AxpN77+TiOOks9iJ0e+V4Fq5UL9illclJESJ3bdE3nYTmqre8k4DfPkkp/f8+sa8V5NfLLS7YfptL/ujvxeZsGGdBtyLecX9sE0fmE/j7qlKIZaaarhk1ZVddN8Gs880cnI1jLP20y5BoMd5cRMdBcWIm05E6jj7L74Io3nz9UyV5oFGyrTgN09s5clGyooMd7iyPUpcK2M1q86OgvP2kDz6YoXLCFWbaeGs+vipwTy+zaR/JTkzta0AInbFL9QB+bmKZ75vEVeMVS14d6cMEQZJnCohnG6NMGXangRaKSjrlIuBmmeweeUOlnUHoh5G3LJb24CmX2v7kxzElyfliRJCDVPYNeQ59yncm+Y5Rqq0mCPTzJESWy0A4tII8/oV78og8840wlg2qyA2pK733Z2Qjv6RX9Ma2lWOz/e4l4CXzp5V7ZMuOcuuh/3LSdowdECTcx6DZVtqHUE9tbMZTdp/tphArslcxcocG30dsgoA99dNtEepHjBTAu2TZUKPOeEH9vIufaGnh+nn9dx9uS+n2QUMiehVzgnVUIqg8EQ3Vw/UkKq5kAJUuZkHxtb4D+irZ1AFKclXBvnx1h0zu0T5gng7OW+ydqnwVC95uo7An9cvY7Iq11fZns7HQqa8HzH4hWJw0/dTeH31po4PUI/vcA1CfLrOYsdg6x9GgzVa67lAxj/ylxav7ecsl7VdM9OGqppFcjeRTBN4q/uT09yraUOc0XgfOf8I3pucoL8f5zI2Q2sfRoM1W+w/64uNwiBmpvy+STt3d1SJPqboPp7PuD6zU7E7Z567lo996Ujt6czNL7UWqbBkBmDXUcDpK4S2LSK97pkFSXzL+DKx7y0lEWhP99v7rGA6/UFPnMC0V7h9Ap/EthcCXCZk1OllrVMgyFzRnt7VSfKNRn6Mp2D2qWIdPdoWA9PZZoJvBghR8qjqbLmGQyGqhttZ+3hLRJoVony5Y7P2bVFprvR+r0/jSC7p/64/OW4sXysPb6drCUaDNkz3BfUCM+rRNmrnT3IdYpMb8fqd18WdaFBo6GIwHXW8gyG3Bju3mqEswVqplGuu7pkLBfYvgj1tr4TaPaYCPI9nSHsHtbyDIbcGe/HaoiHRpSv62yXuqKI9faY82PRLMXQ/x1nT3eJtTqDIXeGe5wa47SI8jc6xlu7iPXW3smZ8onAVklk2glMcpyUe1qLMxhya7huhN4dU8juqgsdy6MGxyxw3e2kkVD8RO7TNILKWIHXVE/+QsWh1toMhvww3EtT5fQQqOdsgh9mWlutl3UF7hBYkMTlZKkOfTubpgyG/DHaFhqxY4VAhwAZ32/vg3QWOIpIhzU1b+1+Av/SXLT1TDMGQ34arJ9B6/ok1/bQIdtSgS6mLYPBEHfC66KktkCgkXO+kZNM+mzTlMFgKBTS8xManemcu1fPTbE0ggaDoZAIbz8lt+8EygT2d6J+dDQNGQyGQiK8EoEZSnID1A3le4Ghph2DwVCIpDdY4FY/T4NAA9sdYDAY4k5sbQUOFBiim+EPEGhlmjEYDIVEdLsJTA2IzbZKYLITpbezwMkCV2nGt0s0r28L06TBYMh3sjvdSRizQEOVXykwUuBxXZwQlfkmJGjlMo0J19i0ajAY8pHs9tUenAiMTxbhQ6CVwHsOsS3WHRbHaaLp5zVEuX/9LyVK21FgMBjyhuxqOAEoXw7yp9N9oX84hPaFu2AhcL5ujH/R2Rj/oxuiXKC/hpxKPGzzvMFgyFrvziexriFytzg9N19+5wDZwxyZ3s75LQXOSXJsYzVhMBiyQXjXKDHNCpEpF1iociMEfvP/Dynj++w9ZFo2GAz5Qnh+EMqJITLdnR7b1k6Zx0LKXKUyc0zLBoMhXwjvfSWmMSEygx3XlFoC9+vnySFlDnVI0lZsDQZDXhDep6ly0Aqc7bur6Oex+vmdkDJ7OIS3gWnaYDDkA+G9qaR0d4jMOSozXz9P0M8vhJTZ3SG8DqZpg8GQD4T3oJLSmyEyxzlOxzU0MY0I3B5Spr9DeM1M0waDIR8I73QnzFP9CL21Ho6f3eCQ+w5TmT8swIDBYMgXwnMTR58YINPAIbkn9O8SgeYh931d5Z4xLRsMhnwivQec3timATITnGGtCNwccr9uzla1gaZhg8GQT4TXXLeBiToVH++6kgg0dRyU/d0WDQPu1dJxOv7MspgZDIZ8JL32jouK6BB2jsBcZ8jrHpM15WArgboCGwkMVXkRmC+wlWnWYDDkK+mVCRwj8ELCntl5As/oHtlTnG1mQcfnAluaRg0GQ5wIsLZAeZLzrQTO1cgoMzS3xUe6A+NQgTLTnsGQHfw/L4nwBt6w/2oAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NTI6MzUrMDA6MDBtU5lQAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjUyOjM1KzAwOjAwHA4h7AAAAi16VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI2VVMuO2zAMvPsr9AM2NCT1Ouwhj8W2aNcB2uzee+xpL/v/KKnEthKnNerkIAkcaUjOsHP2/Th++/3p5o+OXeec/8e/lOLe2XvfvTpbuP3zy9fRHc67/XRyOL2N55+OyCErRn+3sbvz6XU6gRt/OR5ijIE0cPD1axbu8OXlCe599/2px4QiQ80xPGShImELxYaS/31L3MlhkJRExNEQAR9KA5righs1joVDDLoAkpf4+HKZMFHvpoWQwPuc7jH9BTQTSu7w4XoNQiLKBsuhZFrBuMLiBMvKr8dAIhCqTHNhbBAsSrAnDaEMWFZeCOun7hjCG8xq4CmyZrjqzxyJCytJRYqVAAGReYOVMqi0EGI2iQ1aCL6pwBzJ1wQK6cU1fyTOq7RXGYjy0srq/Zys2IWZaataCPaaHzgxcagMU8C6yKvXYtWY9iPpTklyKflGCHNksnppwpLIs61ybegWsXwhBtFOohIr0fNK+yti1/4Ts+daPgX5HB8wUwFX/UeiQvUtDaW/uGsmpmQsc+0fpNj9IRTCysn3vIiuxtG3jEwUIZ8fsHoejzfj5jKA9qfxuAwgUouHZbJAnRyXkWHbtMwCqP3yYnmorcriZtIt/GJUiwYWB5IJHrS4C/WAG+NUiDT+gIkRodE+1ZPYaLyCUiNemFKQG2FSPSmN5AxErbJgTSQ0oqF6Qm0129rZfhr8uu7+AKWHNsLdjEnWAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAEaelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVjZBBbsMwDAS/0mOMyAKXpEQRRk69xw8wcugL+oE8vqSMBO2tF0Na7w5X3G/H/fq4HPv6WI7P71XinMJtX6b2/9vvSz3uX9c/34/nBVXNVAvXDlAvG6qoNCuogFErW/zpvXGhqiAaVraVKsGYxxRH8zhsKyqrQksChstUAsk92EPZNRSuRDyQcFLG9Ki5eoDQ0EWmCa1PdsyQyY6cc3TIITAZZYvBfUCsRBkXkYShxlyTdIn78Nk0BJZWkmoNMjVTY5KMjrNzTmAR0sySEJ1ZaNTFzHqPQC6nM3smETY+t8PxWqpdlWmkJ2qjJak15/DIa4NRu8hrGfpWl+cP9bJpOrcGPqEAAAAASUVORK5CYII=) |
ヒル方式による化学式 CoN6Na3O12
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |