モル質量 of Phenol red (C19H14O5S) is 354.3765 g/mol
C19H14O5S の重量とモルの間で変換します
の元素組成 C19H14O5S
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 19 | 64.3957 | 水素 | H | 1.00794 | 14 | 3.9820 | 酸素 | O | 15.9994 | 5 | 22.5740 | 硫黄 | S | 32.065 | 1 | 9.0483 |
モル質量を段階的に計算する |
---|
まず、C19H14O5S 内の各原子の数を計算します。
C: 19, H: 14, O: 5, S: 1
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, O: 15.9994, S: 32.065
次に、原子数と原子量の積の合計を計算します。
モル質量 (C19H14O5S) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(O) * Weight(O) + Count(S) * Weight(S) =
19 * 12.0107 + 14 * 1.00794 + 5 * 15.9994 + 1 * 32.065 =
354.3765 g/mol
|
化学構造 |
---|
![C19H14O5S - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAAESCAYAAACPYQJ+AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYES8Uguo2vAAAAAZiS0dEAP8A/wD/oL2nkwAAKzNJREFUGBnswQmYHWRhLuB3JiuECGFHFiUiiFRUBgVRKUpUbA11G1RUtCqDVWv0ak3RCkFryUVbTcHKVFChVu14XWpqtYyUamMqOf8JyOaCiYIKBFlCCNlnvkuf4tMkcyYGSCBzzv++qqp69IXHhReFl4Snh3GqqqraTXhmuDIkJCQk3Bb6VFVVtYvwrHBfWBbeFg4Ljwsnh0Uh4SxVVVVjXegKN4SV4TCbCTuFRtgQDldVVTWWheNDwjyjCC8KCR9TVVU1loXZIeFUowiTw7rwfVVVVWNZ+ERIeI4tCL8OS1VVVY1l4RMh4ThbEH4Zfq6qqmosC38REl5lFGF8WBOuVFVVNZaFk0LCR4wiHBcSLlBVVTWWhQnhlrAs7K6F8PWQcIyqqqqxLvSG4bA4PNMDwn7hsyHhs6qqqtpFOC3cFRLuDreEobAhnB8mqKqqaidh1/DK8MHwodAXHm8jYaqqqqp2F44KS8Llqqqq2kXoCk8Ne9hImBbWh7VhF1VVVe0gXBQS3moz4fshYaaqqqp2EN4cEr5mM+GskHCBqqqqdhD2C8NhRZhoI+GZIWGpqqqqdhGuCQkn2EjoDstCwhNVVVW1g3BeSDjXZsI/hoQ/VVVV1Q7CiSHhKpsJp4WEf1FVVdUOwsRwbxgO+9lI2CcMh5VhkqqqqnYQvhES3mAzoRkSZqiqqmoH4e0h4Qs2E/4qJHxUVVVVOwgHh4Q7wzgbCb8fEq5VVVXVLsKNIeEYGwnjw/KQcJAxIEwIU1VVVY0mnB8SzraZFUf5+6UfdsUN/+j1dlBhl3BOuDEkJKwM/xyOUVVVtbHwkpCw0GYaDWeUIqX4sh1QmBauDsPhG+Ft4fXh3PCbsD6cqqqq6rfClCVzfeeq/3TdwoV2t5FFixxYipTinlJMsIMJ/xAS3mIzYb+wJNwXHq+qquq3mk2DpUiz6VU2U4obSpFSPMcOJOwfNoR/N4rwRyHh/6qqqvqtUry3FGk0fMZmmk1/U4qU4sN2IOHUkPBnRhEmhNWhqKqq+q1Gw++VIqW4NdFlI82mF5UizaZFHiXh8eEvw1keEN4fEl5lC8IN4U5VVVUbK8VNpUiz6UgbueIKk0txXymGfvhDe3uEhHFhRhgIG0LC8rCz+4VzQsKLbEFYHO5TVVW1sVJ8uhRpNLzPZhoN3ypFmk2vtZ2FA8LscHNISFgTBsKM0OV+4f+EhDfZgvCL8CtVR3gRvoh/wImqagsaDa8sRUpxuc00m95VijSbLrUdhImhNwyG4ZCQ8KMwO+xpM+EFIeFcowh7heHwr6q29xoMIwiCWzGAPkxXVRu56iq7lWJ9KdYuWGCqjZTiSaVIKW5PdNtGwhPD3LAsJCSsDgNhRugyijA5/Cb8IuykhXBmSDhd1daeitUI7sbNuAdBEARLcTFeh8eqOl4pFpQijYaTbaYUS0qRZlOPh+HGG01au5dTwhVhOCQkXB3eHnazlcI7Q8KXw2NsJLw8rAo3hMmqtnUYbkXQxM7+13T0YQB3IAiCYAn6cRoOUHWcUnywFCnFJ22mFJ8qRRoNH/AQXHmlQ0sxtxS33z3DFSFhdRgIM2ylcET4aJgcusJfh+Fwd5gfvhiuCQk/CU9Qta1DcQuCb2OSLZuOPgzgLgRBECxBP3qxh6rtLVrkGaVIKZbaTCleWoqU4nu20hVXmNxsel0pvleKlCKlyLVfcVl4a3iMrRAmh94wGIZDwms9IBwdPh4uCwvCl8KbwyRV2zoEv0ZwGSZ7cMahB7MwgOUIgiBYgn70Ypqq7SS6S7GsFLnySofayIIFppZibSluLsUEW9BoOKwUc0vxm1KkFCnFimbTpY2GGbZSODJcEO4OCQnLw9+Fw1Ud6yD8HMH3MMXDNx49mI1BrEYQBBtQMA+92FXVFkrx+VKkFO+0mWbTIYkuLVxxhcml6G02DZZiuBQpRUpRmk19CxaYaiuEyaE3DIaEhIQS+sIuqo52IJYiWIBdbB/j0YPZGMQaBEGwHgVzMQOTVWNSs+l1pVhaij+xFZpNh5dibinuKEVKkVLc02joL8VRtlJ4cpgb7gwJCctDf3iaqrrf/vgZgoWYaqRxuAQzbVs7YwbmYBBrEQTBehTMxQxMUo0JiW4bSXQ1m15UirMaDf2NhvMaDa9esMDURsO3SpFSpBQpxX81Gt70wx+aYivkMFNDX2iEhISEBeG0sJOqesDeuAHBYkwz0jh8CcEt2Mn2MwUzMBcFQwiC4D4MYg5mYKJqhzcwYFyj4SulSCnuLcW1pbilFCnF35Xib0txT6Ohf9EiT7OVmk09jYb+a7/mp2FDSFge+sORqmoze+E6BFdhdyN14x8QLMczPbKmYgbmomAYQRCsxCBm44UYr9rhNBpeXYo0Gv7hhz80xQOuusoTm02HXHmlPRYutJOtUIpdS/EnpVhcipQipRhe/QSXhteGyaqqhWloIrgGexipC/0IVuK5Hn374FW4ED9BEATBMC7DRNUOoxSfKEUWL/ZUD1GzqafR0F+Ke0uRUqQUdzca+kvxFFW1BbuhgeDH2NdIXfg7BPfhBDumfdCLi7AWQfAp1Q6jFPNKkWbTGz0IP/iBxzSb+kpxVSlSipQipSjNpr6FC+2kqn6HXXElgp/isUbqwvkIVuH5xo5/Q/Bz1Q5j8WLHl2KoFOtLMa/ZdKQtaDb1NBr6S7GyFClFSnFXo6F/0SJHqKqtNAXfQ3Aj9tfaXARr8QfGlhMQ3I1u1aPi6qvtX4oXLl7saA8oxaml+HkpUoo0GhqNhtfbSCmeV4rrSpFSpBRDzabBUvRef72JOlnYLRwcJmohTA0Hh521EMaFp4Tnh56ws/a2M65AcBMer7WPIFiLmcamnyF4hjYXJoejw4xwdJjsEXTNNaaV4jnNpr5SzGs2DZZiWSlSipTiczaS6Fq82PHNpgtLsaIUKcWZHtBsOrIUKcWtpZhbiieo/keYExJ6tBBODwkn20gYH84Kd4WEhIQ14XNhL+1nJ1yO4JeYrrVzEKzDHxm7LkDwQW0q7BLOD6tCQkLCfeH8sIttqBS7LlrkuGbT6aWY12j4TiluK0VKkVKkFClFSpFS3FGKK0rxXqNoNh1SimWlWFGKCR7QaHhBKSaoNhXmhIQeLYTTQ8LJHhC6wpdDwr+EPwhHhOPDBWFD+EmYpn1MxDcR3IYnae29CDbg1caGA/A6I81EsEAbCpPCf4XhcHF4XnhCeF74XEj4QZjkQQo7h6PDG8J54VtXX+66UqQUKUVKkVKkFCnFPY2GhaX4+1LMWrzYiT/4gX1spUbDl0qRq6+2v2rLwpyQ0KOFcHpIONkDwqkh4bOhy2bCGSHhU9rDRMxHsAxP1tq7EWzAa40NXbgVweE2NQVrsAG7azPhAyHhg1oIHw4J7zeKMCFMDzPDnDAQrg8bQkJCQm68wDWlWFuK60sx0GiYU4reRYsckei2FQYGjLOZUkwoxY9KsXbhQjuptizMCQk9Wginh4STPSB8N6wLexlFuDasCjsb2ybg6whux+9p7Z0IhvEWY8slCN5tpMsR9Goz4eZwW5ighTAx/Cbc5H5hn/DKcHYYCDeE9SEhISEhYW24JnwxvD+89OY+T0h0exiaTReX4t9K8bZGw4ubTaeU4rJSpBSfVv1uYU5I6NFCOD0knOx+YUJYE66zBeFjIeG5xq5x+CKCu3GU1t6CYQzjDGPPqQi+baT3IbhIGwkHhYT5tiB8OSQcGF4VEhISEjaEJWF+mBtOCz1hsu2g0XBGo6FRiqFSpBQpxT2l+NCNN5qk+t3CnJDwo9AMzdAMzdAMN4WEk90v7BMSvmkLwp+GhFOMTePweQTLcbTW/hhDGMbbjE17YgirsbNNHYngV+jSJsKxIeGTtiB8LCQcEw4N3wjnhteGp4dJHgXXX2/iVVd54g9+4IBEl2rrhTkh4evh4nBxuDhcHC4OC0LCye4XHhsSvm4LwttCwmvcL3QbO7rwaQT34JlaewOGEPyZse1KBCcZ6WYET9EmwnEhYZ4tCOeFhGfZwd14o0mlmNVsepVqdGFOSOjRQjg9JJzsfmGnMBSatiB8KCScGHYP94TBMDv0hG47pi5ciGAljtdaL9Yj+HNj3zkIPm6kixG8V5sIh4aEr9qCcGlIOMQOrhS9pUgpbrrxRpNUrYU5IaFHC+H0kHCyB4Rrw4ow2SjCd8JQ2D2cFBISEhLuCF8NfxqOCF0efV34JIL7cILWXo71CD6gPRyH4EdGOgXBoDYRusPd4adGEbrCz8KdodsOLtFdiqtKkVLMUrUW5oSEHi2E00PCyR4QzgwJ79BC6AlD4V88IOwbekN/WBISEhISbg8DYVboCV0eeechWIXna+2lWIfgbO1jHO5EMN2mpmE91mIXbSJ8KiScrIXw8pBwgTGi2TSzFCnF7QsWmKoaKcwJCT1aCKeHhJM9IEwJPw1rQl+Y6H6hK8wIvwqrwpONIjw29Ib+8IuQkJCQcFsYCH3hCNvfuQjW4g+19iKsQfAx7WcAwVuNtBDBS7SJsG+4PdwTXhXGu18YH14TVoTbwt7GkGbT90uRUvyFaqQwJyT0aCGcHhJOtpFwULgyJKwIPw63h4Sbw/EehHBoOCN8KdwWEhISEn5+N+fj9djftvWXCNZiptZegNUIPq49vRnB14x0NoLztZFwRLg+JKwIS8KKkHBNONwY02x6bilSiuULF9pdtanQE84Ie2ohPCmcER5nM6ErnBA+GC4IHw4vDzt5mML00BcGwh0hP+b7CIIluBR9OMBDNwfBBpyitediJYK/1b72xzBWYKJNHYNgqTYTxoUXhg+GvwkfDC8I44xRpbisFCnFXNXYE7rD095DH+bjHgRBMIzr8Ld4Gfawdd6DYANeo7Vn414EF6FLe7sGwQk21Y3bERyizYTJ2kizqacUw6VYdfXV9leNeePQg1kYwHIEQRAsQT96Mc1I70KwAa/T2rOwAsFn0a39nYfgXCN9AcE7tJlwebgrPEubaDR8pRRpNFygajvj0YPZGMQqBEGwAQXz0Iv3IRjG6Vp7Ou5CcAm6dYYTESw20hsQzNdmwi9DwsHaRKPhsFKsL8W6UjxB1dYm4wScg//EWgRBcC+G8RatPQ13IvgyxuscE3EvhrGfTe2LYazEJG0i7BSGwtowThspxedKkVJcouooU/BCnIsfYy0Wae1I3IHgKxiv88xH8AYjLUZwojYRjgwJN2gzixd7XCnWlGKo2XSkqiMdiOBujDfS/0HwdUzQmd6B4AtGOhfBedpEeGVI+Lo21Gi4oBQpxVdVHetHCJ6ttVMwUec6GMGdGGdTJyC4RpsIZ4aEj2pDixbZtxQrS5Fm07GqjvRxBB9SjeZGBMfY1AQsR3CgNhA+ExL6tKlSnFuKlOIyVUc6CcEi1WjOR3CWkb6G4M3aQPjPkHCCNnXNNaaV4u5S5KKLHK/qOJNxH4awt6qVlyD4vpHeimBAGwjLQsL+2till3rnsce6Fv+l6kjfQnCqqpUpWIMN2N2mHo/gbow3hoVdQ8LK0KW9TcFtCE5WdZx3IbhENZrvIDjFSD9C8GxjWDg6JFytM7wTwbXoVnWUwxHcjm5VK3+G4GIjfRzBh4xh4dSQMKAzTMRSBKeqOs5SBEepWnkKglvQZVMnIbjSGBbODgkf0TnehGApJqo6yoUI3q8azc0IjrSpyViFIextjAqfDwlv1DnG4QYEZ6g6yssQfFc1mosQvM9I30ZwqjEqLAoJx+ksvQh+jZ1VHWMq1mE9dlW10ovgciO9G8ElxqhwV0jYS2fpwpUI3qvqKP+B4GWqVnbDeqzFLjZ1OILb0W2MCXuFhOU604sR3IHHqDrGmQguVI3m+whmGmkpgqOMMf/GMb/itrBI57oCwRxVx3g6gptVozkLwQVGuhDB+409b0DGcYnO9WwE92JvVUfowi0IDle18kwES430MgTfNfZ8BMHZOts3EXxM1TEuQfBuVSvdWIbgiTY1FeuwHrsaWwYQnKqzHYkhrMaBqo5wKoJvq0bzjwj+1Ej/geBlxparERyt+hKCflVH2BNDWI2dVa28HkP4hJHORHChsaML9yLYTfVErMcGPF3VEa5EcJKqlV2wt9aOQnCzsWN/BMtUv/UD3IUhFMzFTDxG1ZbOQfBx1YM1BSuxHL9AP3qxux3XCQj+U/Xf3oFhDGEDgiBYg+9iDo7HJFVbOA7Bj1QPxmRchuA+BEGwAQUfxR9gqh1HH4LPqN6EIQzjbZiCGZiLBViHIAhWYQHmYgYmqsakcbgTwXTV1piI+QiW4SnowWwMYjWCINiAgrmYicd49HwUwZk62xswhGG8Q2u7YAbmomAIQRCsxCBm4zmYoBozBhC8VfW7TMA/I7gdRxhpJzwHszGINQiCYD0K5mIGJnvkfB3BK3SuU7ABwWxbb0/MxFwUDCMIgnsxiNnoQbdqh/VmBF9Tbck4fBHB3TjK1tkZMzAHg1iHIAhWYQHmYgYm2X5uQHCkzvQKrEfwfg/P3ujFPBQEQRCswCBmowddqh3G/hjGCkxUtTIOn0ewHEd76HbBDMxFwRCCILgPg5iDGZhg2+jGagxjis7zMqxDcJZtb1/0oh9LEQRBsAwDmIUe1aPuGgQnqDbXjUsR3INn2ramYgbmomAYQRDci0HMRg+6PTQHI/ilznMS1iD4qNHtg/+Ht+PJHp7Hohf9uAlBEAS3YgB9OFj1iDsPwbmqjXXhQgQrcbztb2/0Yh4KgiAIVmAQs9GDLlvnRQgu11leiNUI/saWvRpBECzDAGahx8MzHX24FL9CEATBLRhAHw5SbXcnIlis+q0ufBLBfTjBo2Nf9KIfSxEEQbAMA5iFHnRp7R0ILtQ5ZmAVgnl+t/3wZnwev0YQBMEvcQneiMd5eKajDwO4A0EQBEvQj9NwgGqbm4h7MYz9VP/tPASr8Hw7jseiF/24CUEQBLdiAH042P+ah+A9OsOzcS+CT6PLgzcdfbgUv0IQBMEtGEAfDvLQdeMovAf/ghUIgmAYN+NqfEC1zcxH8AbVuQjW4g/t2A7DW/FPWIYgCIIluAhXI5ip/T0LKxB8Bt22jenowwDuQBAEwRL04zQc4KEbhx7MwgDuQRAEF6q2iXcg+ILO9pcI1mKmsWc6+jCAOxAEwRr8Mw7Rvo7CXQg+h27bRzeOQB8GcDeCIAiWoB+92MNDNxGn48cIVqq2iYMR3IlxOtMcBOvwR8a+bhyFeQiCYC0+jYO1l6fhTgQDGO+RMw49mI35uAdBEAzhevSjF9M8eNMwjGHsr9ombkRwjM7zHgQb8Grt5ZMI/h79WI9gHS7Foca+I3EHgq9gvEfXePRgNgaxGkEQbEDBXMzEY2ydyxCcqtomzkdwls7yLgQb8FrtZSJ+g+BI/+Px6Md6BEMYwGHGpifhNgRfwwQ7nvHowWwMYg2CIFiPgrmYgclaezeCS1TbxEsQfF9rU/FveD+ehfHGvnciGMbp2s8rECw20uMxD2sQDGEATzJ2HIpbEHwbk4wNU3AS/i8WYQOCIFiFk4x0OILb0a162KZgDTZgdyP9AYIgWIlBzMZzMMHY8mYMYxhv1Z6+gWCW0T0O87AawRDm42l2bIfg1wguw2Rj1y6YgbkoGMJBWluK4CjVNvEdBKcYaTe8Ep/EDQiCILgb/4xZOBJddlx/jCEM4+3a015Yh/XYx+92EOZhNYIhzMdRdjwH4ecIvocp2ss0o7sQwftV28SfIbjY77Y3ejEPBUEQBL/BfMxGD7rsGE7DEIL3aV+zEHzDg3Mg5mEVgmHMR48dw4FYimABdtFZXobgu6pt4ukIVqHbg7MvetGPpQiCIFiGAcxCj0fHK7EewZna22IEr/DQ7I25WIVgGPNxtEfP/vgZgoWYqvNMxTqsx66qbWIDgrM9PI9FL/pxE4IgCG7FAPpwsO3v5ViP4C+0tyMQ3IlJHp69MRf3IQgG8QyPrL1xA4LFmKZz/QeCl6m2icUIgjUYwCz0eHimow+X4lcIgiC4BQPow0G2rRdjDYI52t9HEXzStrMX5uAeBMEgjrH97YXrEFyF3XW2MxFcqNomdsdVGEIQBMHNuARvxOM8PNPRhwHciSAIgiXox2nY30P3IqxB8Nfa3zjcguAY296emIPlCIJBHGv7mIYmgh9iD9VRCG5WbXNPQh8uxa8QBEFwCwbQh4M8dN04An0YwN0IgiBYgn70Yndb5wVYjeDjOsOLEfwEXbafPTAHyxEEC/A8285uaCD4MfZV/bcu3ILgcNV2NR19GMAdCIIgWIJ+nIb9PXTjcSzOxGW4D0EQbMBrbNlzsBLB36JLZ/gSgjM9MvbAHNyNIFiAEz08u+JKBD/FfqqNXYLg3apHTDeOQB8GcDeCIAiWoB+92MNDNx49mI1BrMaTje443IvgYnTpDI/BKgzhQI+sqZiNuxAECzDTgzcF30NwI/ZXbe5UBN9WPWrGoQezMR/3IAiCIVyPfvRiNw/dTujS2rFYgeCz6NY5Tkcw6NEzFbNxJ4JgAWbaOjvjCgQ34fGqVvbEEFZjZ9UOYTx6MBuDWI0gCDagYC5m4jEevqfjLgT/hHE6ywIEr/fo2wWzcBuC4PuYaXQ74XIEN2O6akuuRPBi1Q5pPHowG4NYgyAI1qNgLmZgsgfnqbgTwZcxXmc5BMNYiV3sOHbBLNyKIFiImejyvybimwhuw5NUv8s5CD6hGhN2xgzMwSDWIQiC9SiYixmYZHRPwW8QfBUTdJ4PIfisHdMUzMItCIKr0YtJmI9gGZ6s2hrHIfiRakzaBTMwFwVDCILgPgxiDmZggv/xh1iO4FuYpPN0YQmC59mxTcF7cBuC4E4Ey/Bk1dYahzsRTFeNeXvg5Tgf1yEIgmAdfoMhBE1M0pl+H8Ev0G1smIQ+/Bq/wr04SvVgDSB4q6rt7I1ezEMTQRDciWk612cQfNjYsytWYhiPVT1Yb0bwNVXb68GFeA/20Ll2wnIEhxmbvoHgjUZ6Pa7A81Wt7I9hrMBEVdUBXofg+8autyP4opH+CsFHVaO5BsEJqqoDXIbgDGPXwQjuxDib+n0E16pGcx6Cc1VVm9sfG7Aa04xtNyI4xqbGYzmCg1StnIjgKlXV5v4cwT8Z+85HcLaRvorgLapWJuJeDGM/VdXGrkXwh8a+lyBYaKQzEHxZNZr5CN6gqtrUMxAswwRj3xSswQbsYVMHIrgHE1StvAPBF1RVm7oAwV9rH4MIXmWkGxA8W9XKwQjuxDhV1WYm4jcInqp9vBfBZ4z0cQQfUo3mRgTHqKo283IEV2kvv4fgVnTZ1EkIFqlGcz6Cs1VVm/k6gndrPzchONKmJuM+DGFvVSsvQbBQVbWRPbAW67Gv9vNpBO8z0rcQvFbVyhSswQbsoaraxDsRzNeeXongciO9C8GlqtEMIjhFVbWJJoJXak+7YT3WYqpNPQnB7ehWtfJeBBerqjbwZAR3YZL2tQDByUZaguAoVSu/h+AWdKmqMe48BJ/S3j6I4JNG+hSC96tGczOCI1XVGNaNXyI4Vnt7BoKlRnopgu+qRnMRgvepqjHsJAQ/RZf21o1lCA61qalYh/XYVWfbXWu9CP5dVY1hX0DwAZ3h8wjeaaT/QPBynetNuAvHGml3DCPYV1WNEd14Av4I52AthnGwzvB6BN800pkI+nWmN2IIwZ9o7V4Ef6mqdkCPxQzMQj8W4F4EQXAb1uFYnWEvDGEVdrKppyP4pc7Ti/UI/lxrL8YQgreoqkfRPjgRs/D3WIjlCIIgCIKb8S2ch28juBUH6gxNBC+wqS7cguBwneMVWI/gA1o7BMsR3IFdVdUjYFf04DTMxXzciiAIgiC4CwvQj1mYgb1sahz+FcFVmKL9fQTBx4z0OQTv1hleinUIztbaQfg5ghuwp6raxibiCJyGuZiPJRhGEARBsBwFl2I2ZmI/W28afoLgK+jW3o5HcJ2RXoPg29rfSViD4GNaOxBLESzALqrqYZiAI9CLORjA9RhCEARBsBbX41LMxkxMR5eH7zDcheAc7W08liM4yKb2xBBWY2ft6wVYjeDjWjsAP0OwEFNV1VYaj+mYidm4FNdjA4IgCIJ1uB4DmINeHIFu29cLsB7DeI329hUEpxvpSgQv1p6ei5UI5mltH9yAYDGmqapRTMFcDOIbuBbrEARBEKzD9fgnnIVX4FCMs31Mw3PwJqN7J4LVeKb21Yfg/xnpHASf0H6ejXsRXIQuI+2F6xBchd1V1RYsQRAEQXALBjEPp6EHO9k+JuIInIa5mI8lGEYQ7GV0n0JwCw7Qng5AcA8m2NRxCH6svTwLKxB8Bt1G2hPXIPgh9lBVW/DHCIZxJf4CPdjJ9jEJT8drcS7mYymGEQRBEKzEInwGBxjdBFyOoImdtafrETzHpsb9//bgBerrgr4D8PPycgdvgPfyQnlZeBqhmQtXWljHFdo8CTaHKz1q007k0SZtZnRawrG16ekmtq0zdDUpKkdqJ1tqkY3EnKmbpqgp3hUkBYEX3s/szJ0j/d5eEaH+///7fR48hWC8zvAGrEDwLxikaUcsRXAndlPKS7gKwU22rsEYj6k4F/OxFGsRBEEQrMcdWIDZOB4TMMjmG4O7EXwdXTrPZxF8StMVCD6o/U3EUwi+jsGadsBPEfwCuyvlJQzFEwjeZMvtgSmYiflYijUIgiAIerAMizAXJ+FgDLN1HIiVCM7Ted6B4CZNJyP4lvb2ejyJYCEGaxqFHyK4G3sqZTMch+AWm2cPTMFMzMNiPIsgCIIgeBjX4mKchIMxwrb3TmxAL6brLMOxGhuxi03tjl78CkO1pwPwCIKrMUzTSFyP4JfYRymb6UoEH9E0EjNxKW7EKgRBEATBL3ENLsT7cQhG+v06G8EaHKKzXI3gzzX9HMER2s9+eBjBdzFM0wj8AMEDGK+UzbQz1qMHu2kagvUIgmAFFmMeZmIKdta6LkXwEPbQOWYiuEzThQjmaC+vxXIE38NwTUNxFYLleI1SXoaZCP7dbzcbZ+JIjNN+huB6BDdimM5wAIInMMim3o7gFu1jL9yH4EcYpWkoFiF4DK9Tyst0M4L36mxjcQ+C+TrHMgSH2NRQXImZ2sOrsQzBjzFa0xBcieBxTFDKyzQBwQoM0/leh1UI/kpn+CKC87SvPXEPgp9gO03d+BqClZiklC3wGQRfNHAcjQ3YiGO0v2MR/Eh72gV3IPgZdtLUjX9F8DQOUcoW6MZyBG8ysHwMwTN4vfY2CmuxAXtqLzvjdgT/hTGaBmE+glU4VClb6GgEd6HLwHMZgvuxi/b2BILPaB874mYEP8c4TV24BMGzeItSXoGvIfhrA9Nw/ATBYgzTvq5G0IP/xFSM1rp2wE0I7sRumrrwBQSrcYRSXoHtsRobsZeBazc8gOAr2tdEPI0gCDZgKeZiKrbTGrbHEgS/wB769hkEa/A2pbxCpyL4vjIRzyI4S/sai7NwOa7FOgRB0IOlmIspGO53bxRuQHA/9ta3OQjW4V1K2QoWI5ih/Npx2IiNeLfOMApTMBeLsR5BEKzBYszFFAy1bY3ADxHch7307W8RrMNUpWwF+6IXz2K08v/OR/ArHKTzjMYUzMVSbEQQBM/iWpyLwzHE1tWFi/EgxuvbbATrcaxStpJPIviK8mJd+CqCezFOZxuHqZiLpehFEATP4Fqci4MxyCvXhV307WwEG3CCUraSLixDcKTym0ZgCYIfYqiBY1ccj3m4A0EQBE9gEc7Fweiy9XwEwQacqJSt6K0I7scgpS+740EE/2Tg2h3HYx7uQxAEwaNYgNMwwZb7MIJenKqUreyfEXxK6c8krEZwpvJr43ES5uGXCIIgeBgLcBr2sXlOQS968UGlbGUj8DSCA5SX8l70YgOOVn7TeJyG+ViOIAiCZZiP07CXppnYiF6coZRt4EQENyqb61MIVmB/pT/jcRoW4CkEQRAswzfwOSxAEHxUKdvI9xCcrmyuLlyB4E7spGyObkzAaViAlQiCIAgWKWUb2RMb8Bx2Ul6OEbgJwaMYrrxcg/FHWIinsAL/ppRtaBaCK5QtsT82IvixUkrLuw3Bu5QtNRfBU0opLe2NCB7DEKU/p+BPMVTTDxAsU0ppaZ9H8FmlP0PwOIKJmu5DcJZSSssaiicQ/KHSn/cguE3T4QiWo1sppWUdh+AW5aV8E8HZmi5FcIFSSkv7NoKzlP6MwVr0YHebGo6VCA5USmlZY7EOPdhN6c+HEFyl6QQES5RSWtqHESxSXspNCKZpugbBGUopLe1mBO9V+vMHCJ7GCJvaFT1Yh3FKKS3rdQhWYJjSn7kILtH0UQTfUEppaRci+KLSn0F4AMGbNd2K4BillJY1CA8iOEzpzzsQ3I0um5qE4HEMUUppWe9B8At0Kf25HMF5mi5GcJFSSku7H8El+vYmvEXZHqvRi31tajAeRTBJKaVl7YYgOEzTJDyHJ/EaA9vJCK7TdAyC25VSWtoYBMF5mgbh2wj+BzsauG5A8H5NCxGco5TS8q5HsB4TNI3GrQi+i24Dzz7oxbPYzqbGYC02YE+llJY3CD9GcC/GadobjyH4OwPPJxDM13QmgquVUtrGCCxBcAOGapqMtQhONbDchWCKpiUITlBKaSu740EE/6hvf4FgPY4wMByOYDm6bWp/BKswUiml7UzCagRn6NvfI3gSr9H5vozgAk1zEFyqlNK2jkcvevB2TYOwCMEd2EHnGo6VCA60qUF4AMFkpZS29mkEK7Cfpu1wG4Kr0a0znYBgiaYpCO5Fl1JKW+vCFQjuxI6a9sXjCC7Qma5BcIamyxCcr5TSEUbgJgTfw2BNf4x1CE7RWXZFD9ZhnE2NxjPoxXillI6xFx5FcJG+nYzgORymc3wUwTc0fQDB9UopHefNWIvgdH37HIJH8Gqd4VYEx2i6DsHJSikdaQaC9ThSUzeuQnALRmlvkxA8jiE2tTc2Yg12UErpWBcieAqv1bQ97kCwEIO0r4sRXKTp4wguV0rpaINwJYL/xg6aDsAKBJ/UngbjUQRv0HQngqOUUjredvg5gmvQreko9KAX79N+jkVwu6bJCB5Ct1LKgLAPHkNwob59GMFzOFR7WYjgHE3zEMxVShlQDsdaBKfq25cQPIxXaQ9jsBYbsLtNDcdKBAcppQw470ewHm/VNAT/geBmjNT6zkRwtabpCH6qlDJg/QOCJzBe0xjcjeDr6NLaliA4QdNVCM5UShmwurEIwR3YXtOBWIngPK1rByzD0xhhU7uiB+swTillQNsOtyP4FgZpeic2oBfTta4uvFbT2Qi+qZRSnrcvnkDwaX07G8EaHKK93IrgWKWU8oK3YB16caK+XYrgIeypPbwBwZMYqpRSXuQUBM/hME1DcB2CGzFM67sSwcVKKaUPX0DwCF6taSzuQTBfaxuJjQimKaWUPgzG9xH8DKM0vR7PYAMO0Rp2wuGYiXlYjiBYq5RS+rET7kKwEF2apuKdfvd2xpH4EC7Bj7ASQRAEQbAaxyqllJdwAFYimO13b3scjJMwF4uwDEEQBEGwAosxDzNxHPZXSikvw1HoQS/eZ9sYigk4HrOxCMvQiyAIgmAVlmI+zsVUjFdKKVvJTARrcKgtNwQTcDxmYwHuwEYEQRAE63AHFmA2pmI8upRSyjZ2CYKH8Sr9G4zxmIpzMR9LsRZBEATBeizDIszG8ZiAbqWU8nsyBD9AcDNG+j97YApmYh4WYzWCIAiCHizDIszFSTgYw5VSSgsah2UIHsGzCIIgCHqxDFfiAvwZJmKYUkppM+/AaqxFsAKLcTFOw+EYrZRSOsT5CL6DHZVSSoe7C8FRSimlw01GsBzdSimlw12KYI5SSulww7ESwUFKKaXDnYBgiVJKGQCuRnCmUkrpcLuiB+swTimldLhzECxUSikDwK0IjlFKKR1uEoInMVQppXS4ixBcpJRSOtxgPIpgklJK6XDHILhdKaUMAAsRnKOUUjrZbMYMYxU2YA+llNLJwhm9rLiSLymllE4XloSEE5RSSicL+4eEVWGkUkrpZGFOSLhUKaV0sjAoPBASDldKKZ0sTAkJ94YupZTSycJlIeF8pZTSycLo8EzoDeOVUkonCx8ICdcrpZROF64LCScrpZROFvYOG8OasINSSulk4eMh4XKllNLpwp0h4SillNLJwuSQsDx0K6WUThbmhYQ5Simlk4XhYWVIOEgppXSy8MbwdPipUkoZCMKIsJ9SSmk1YWI4PeyqD2G/cHoYrw/hjeGsMCf8TXh3GK6UUlpRmBUSJutDmBESpnmRsFu4LiSsDw+EZ0PCA+HtSiml1YRZIWGyPoQZIWGaF4QR4fbQE84Joz0vdIc/CQ+FtWGSUkppJWFWSJisD2FGSJjmBeHskHCOPoSJoSfcoJRSWkmYFRIm60OYERKmeUG4OawOI/0W4Tsh4VVKKaVVhFkh4egwNowNY8PYMDb8ZUiY5nlhcOgJt+lH+FhIOEYppbSKMCskJCQkJCQkJCRM87wwNiRcox/h5JBwslJKaRVhVkj4eJgepofpYXqYHj4fEqZ5XtguJFyvH+GDIeFEpZTSKsKskDBZH8KMkDDN80JX+FW4Rz/CnJBwhFJKaRVhVkiYrA9hRkiY5gXhmrAh7Om3CDeH58JopZTSKsKskDBZH8KMkDDNC8J7QsJloctvCO8LCV9WSimtJMwKCZP1IcwICdO8SPhqSPh2eFvYJ0wMF4R1YVkYq5RSWkmYFRIm60OYERKmeZHQHT4RVoWEhIQN4Yqwm1JKaTVhh7BvGKYPYVTYN4zShzA0HBqmhreGnZQyAPwvbDhQixERjOIAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NDc6MjArMDA6MDDUZqLtAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjQ3OjIwKzAwOjAwpTsaUQAAAll6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VVuO2zAM/M8pdIE1+JTEz02yKIpiE6Dd9g793/ujQ7lZa1GhdkjI8piiOEPlVPL6fv32+718XHI9nUqh//wiovxSIjq9lhyU88uXr7dyeXs+P2Yu95+3tx9FvEjHN7g/Y5/f7q+PGS73wltVMtWiWzNz0kIbjev4UgoCbqQezBggAbW6wCni6WYSrQlw3c09FjgDjjb3Jj1xZJ3MFzgvF8yqkXKm5VU7r+JV4LCPbt2iPNHGxNx5AWwAYr0glVaeeEOCqm0B7AAqXmszSWBwlbqKGADahsLUNpbuppSF/wfINJDcq1AGqshxDeSRZEOKPYscTchlBRQAc7ednGRfXBB+BdWEokRIVDlHFM51xTVbQmXjFgGSMXLibraC+h5VREZURfwqsoRWUA4oyjmi+kZVglakcxusi1eLnkFBf8hyV30gW2upj2QJtbIVSxx7pow8KUOFWrOl1GlHOnfvlGJvvcdKdMJ7oaJxhCdjyFeWMQdRthGAKqnUlkSskNlBKI41RYKjNZrzqqAyaELFGU2bAFExXSL9L6GVUcghGEWnrLb0crt+Oh/2E+N8v12PE0PSjoMhbz36P9/b0eYM86ObGVaPpjVYO1rTYP1oQIPF0WYG47mbLB3z1DYZnmVqD0vHOnWBpWObxG7p2CdN83B1kq6NmTYp1NJxn5Q4Fo9JcJZOZmFZOuFJQJZOZBJKPkIGkyBszNhEvKUTnwi23P5HxlJzDzNNI+E+FUeyvjJnnNzPTOfz438F49MfFHE84NGpKtMAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAS56VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAGJVVULmNxEAMa+VCG5gd6B1JMDbaAhxcCW5jiz/Kji7j0DRF8nz/8vY+9/OzXXJd13bu1yX7v8eNAfjnu/FcSqZDZ5j5OGSSevGQqQQ0Dp0mFQEi3XyNg6Z7SAoYsiRrRo2UdeDT0uQax4smJznJAEqTXAISx+CtA4DKGWYvmRxVPgCcOO1WiUirFPIlz4+BFFD5pCXVJ8WXVbYIt0uaigh93KtCHitmZeQqtUDLZpzTs/tF1h0AWjwDbn3KJnGVDmQNpAXj00IxRfcNZzAIxr0WUqiY2tNjMcbo4prW1nAA8Jsi5uR73SK9I2LM/lEBNOwOzUswiU1stPIZTkmyKe4BaS74NIG4KlFdLIRcxv79A8dXZ7JZcxe6AAAAAElFTkSuQmCC) |
外観 |
---|
フェノールレッドは空気中で安定な赤色の結晶として存在します。 |
関連化合物
ヒル方式による化学式 C19H14O5S
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |