モル質量 of Quercitrin (C21H20O11) is 448.3769 g/mol
C21H20O11 の重量とモルの間で変換します
の元素組成 C21H20O11
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 21 | 56.2528 | 水素 | H | 1.00794 | 20 | 4.4959 | 酸素 | O | 15.9994 | 11 | 39.2512 |
モル質量を段階的に計算する |
---|
まず、C21H20O11 内の各原子の数を計算します。
C: 21, H: 20, O: 11
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C21H20O11) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(O) * Weight(O) =
21 * 12.0107 + 20 * 1.00794 + 11 * 15.9994 =
448.3769 g/mol
|
化学構造 |
---|
![C21H20O11 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEWCAYAAAD7MitWAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETIry+B3nQAAAAZiS0dEAP8A/wD/oL2nkwAAKHlJREFUGBnswQl4HXSBL9BzkzRJt7RlX5VNUUFBNhGtiDACPkEdAXEcFR8IOMjqyqJURQQVxxEcwY2HoiPIoogLKoIKAoJFUCiLRZCyS7ekSdqk+b1+7/Z9tw0dHKU0d/mfo1mEdkVRFI0kXBTOMkp4f/ilFYTdwy/DUEi4P3wkdCiKohilTf2ZjImeajymWC7sgZ/hj9gBz8EH8W/4uqIoinoXfhTONUr4SPi95cIt4TKjhNeHhB20ngrejevwIO7EpzFZ1bV4vaf6Ak5SFE2uTQMK62JHXGCUClficeyj9ZyNL+JqvBOfwD44WdV2WNtTbYXnKIom16E+vSXsbmXr4CFVm6h6wKrdj021lhfjKByOr6i5AoOKotChPv0Kn7Oyd2BHVUOquq1aN4a0ltehD//HyhYpiuL/6VCfHqnwSysIr8KOqv6MYWyNG60gdGFzfEVreQ4ewJCn9z4cbGU74i+Kosl1aEAVFoUf4ujw7QpDao5AFy7XWoKKv+1GXG9lGymKFtChcZ2A6/HL8BXMxR54L06o8JDW8hc8B+Mw5L93PS6wsrcoihbQpv7cgNs81d24xnIV7sOOuB7vxgxsgH0rfEHr+REm4R2Komg9YWKYrnWcgz58CLthOj6G16qah3d6qh/hXFWdOB0/xVexlqJoEm2aUBgXPoqbcXlo0xqOxgfwJlyOL2NrPKnqD5jrqWbjQVUvxd3YG7NwgqIo6k+ohEPD7WE4JPSGgzSn3bGlZ8cE/CfeoSiK+hNeFeaFhISEvnCH5nQonsAp6LT6rIdLcROepyiK+hQuDwkJCQn9YQvNaSN8A/dgL6vXnviOoijqU5gaZoWEhITe8FXNo4KNrOwNuAQVz8x0vA2T8AF8RlEU9Su8NcwLCQnzw6zQrTlsjydwAjqsXuPwIXwHp6JbURT1LVwWEhIWhuFwtOaxBX6M2/ByRVG0rjAl3BES+kPC9ZrPW3G8oihaW/jnMC8kLArzwss0tp/gSLQpiqJYUfhuSFgYEi7V2LbFr/EbbKsoiuL/Cz1hVpgfEu4La2lsFRyK3RRFUawovCkMhoT8jvM0nlfh7agoiqJ4OuF3fQxcyIK1+SMqGsv2uAW/wMaKoij+O59n/edyN4J+7K/xtOMITFIURfE3vB5/RXCVxvFKRVEU/4ALMYJHsJn6NxV/xJXoVBRF8XeYiD8gOE9jGIc3Koqi+Ae8Fk/gTnSpX92KoihWg29iCO9Rv76GLyqKoniGJuB2/Fr96sb2iqIoVoPXYB52UBRF0QK+hR+rLy/BvymKYrWqKLpxO07HEP6APizFQgTzrVmTMAGPK4pitako2jAHG/rbFmAEvRjGIizBAAaxGP0YRi9GsEDVPFULMII+DKEfizEBPfgV/qJ4VoRv4fIKl1hBOBkdFT5mubAdjsdL0YY78YUK1yuKBvUZBCNYiNsxGw9gLuYjCIIgCIIgCIIgCIIgCIIgCIIgCIJ+vFHxrAizw/FGCReGiy0X9gqD4eJwQHhD+FoYDm9VNKQOrW1tvFPV5/B+T28qKuhBOyZhHCagC90Yj3GYhHb0oIKpqqaigh60YyI6sTmeg/E4HN9TjInQhvNwcYV3qPl+mIcvhisqLFIUDeR8BNeiYuytgwUI9lCsdmF2ON4o4cJwsWXCDiFhB6OEjUPC/1IUDWQ6RjCIF6gfH0VwEyqK1SrMDreGi8JF4aJwUbg/XGyZcGBI6LEKoTcco2g4HVpTJ85FBafjLvXjLLwHu+CNuFyxut2H66xsC08VqzaiKBrIyQjuQbf6cxSCu9ChWG3C7HC8UcKF4WLLhF1CwouNEtYNCW9QFA3guehDsKf6NA73IjhUsdqE2eF4o4QLw8WWCePCw+HzRgkfDr1hiqJoAFci+Ib6djCChzBBsVqE2eF4o4QLw8WWCweH4fDJ8OKwdfhQWByOVhQN4C0I5mI99a2CWxB8ULFahGvCu4wSPhfOtoLw+nB9GAiLwy3hYEXRAHowB8G7NYbXIpiHtRR1IUwMGyiKOnYOghvRpnH8DMEZijEXdg8Ph0sURZ3aCcMYwnYay04YwQA2VYypsGHoCwkvVxR1ph2/Q3CmxnRRF/d9mdMVYy6cHhJ+qSjqzHEIHsAkDegTPG+I/jAUXqAYU2FK+GtI2EdR1IkNMR/BfhpY+FJIuEwx5sL7Q8JtoU1R1IFLEVyqwYX1wsKQsJtiTIXu8EBIeJuiGGP7IliITTSBcFpI+JVizIV3hYQ/hy5FMUYm4D4Ex2kSYXJ4LCS8TjGmQnv4Y0g4WlGMkTMR3IYOTSScEBJuD22KMRX2DwmPhx5FsYZtiyVYil01mdAZZoeEtyvGXLguJMxQFGtQG65DcLYmFd4ZEu4PXYoxFV4ZEnrD+opiDTkcwSOYqkmFtvD7kHCsYsyFK8LwVZyqqF9hg/B8o4TJYftQsYIwLrws7BW2C23qwzp4AsFBmlzYLyQ8EXoUY+pettmRu7EYWyjqU5gRZhol7B0SuiwXDgiPhYXhjjAY7g4vM/a+ieAqLSJcExI+pqgH/wfBtxT1KcwIM40S9g4JXZYJu4bh8JHQZpkwIXwrzA0bGju7YwT92FKLCK8IfeEURT3YGP0YwQ6K+hNmhJlGCXuHhC7LhMvCr40SJoRHw8csE/YNH7VceFPo8OzpxJ0ITtJiwjTLhclh/TBOMVbOQvATRf0JM8IfwkZho7BR2Ci8NSR0WSY8Gk6xCuGi8HPLhMPCVywXFocuy4TTw3ssE9YN71EzGR3+fp9HcDe6tKDw2jAzJCT0hnPDZGMkdGtN0zAXwZ6KutKmals8iAfxIB7EhVa2Nh6xag9hbVXdGLRMaEMHlqiahqjaAO9R80O8XNUrcYyaHdHuqfbCsaqOwmItJuyOH+IX2BTj8Qb8E74f2qwhYY9wXRjGQJgTPhbGaR3zcJaqT6GiqBttqm6t0F6hvUJ7hXa8zsr6sLZVWwe9qroxqKobiytEVTcWq+rGoJpuDKp6HrZX82t0qjoY+6naX9WT+LnW9ElcVeH9FeZUGKzwC7wFr8be1oCwB67CrXgJNsYxOBTf0Fo+hznYGW9W1I02/3O/x05GCW3YGbeq6sagqm4MqunFQlW9+JmaL+EBVT/FZ9RsjAFV38EPVM1TNQU9WkyYiF3xbaNUuAV3Y09rxqfxwwpHV7izwsMVLsNhODjsonUM4JOqPolxivoQZoSZRgl7h4Quy4SDw3DY3QrCUWEovNgyYZvwIsuEStjUs+suBDO0mLBFSJhuFcJV4dueZWGdMBLeaBXCI+EjWksH7kRwhKI+hBlhplHC3iGhy3LhC2FJuCx8Lvw8LAlHGDsvwwh6sYEWEjYOCftahXBdON+zLGwXEnawCuGGcJ7WcyCChzFRMeba8GN82lPNwrEYtlyFY/ByzETwY7ywwnnGzk24EpNwstbyCBbgRUYJ47A1Znn2DanqtmrdWKL1XIIbsSE+iIpiTFU0hxfgDwheiNlaRDgXe2P7CgssF96Ls7B1hfs9i8J4LMCRFb5uBaELj+OUCmdrPXvhZ+jHBDWDGMAgBjCIAQxiAIMYwCAGVA1iAIMYwCAGMIgBDGIAgxjAIAZUVTAf8zCiaHjnI/iWFhLWDneEP4UPhXeFr4Wl4b3WkHBJuDV0WkE4JiwOG2tNRyHoRRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXAb1tKiKprHxrgX3dgJM7WIMAmH41WYiD/hmxV+Yw0Jz8Vv8BC+giexB96D4yucrfVsgFmYin/G5ap60I5JGIcJ6EIXJmAcJqEdPaqmqZqCNkxGByagC90Yj05MRDt6UMFUTECXqh/jdYqG91kEP9ECwgFhc3UirB9OD78Kvw3fCq+xXHheOFXr+A6CH6kPH0KwEGspGt40zEWwpyYWtgj9YVHYRJ0LneGRkPA6ze+1CBZhc/XjZwjOVDSFkxDcjIomFa4MCd9Up0JPmGa5cEJIuD20aV7j8ScEH1AzHs83trbDUgxgU0XDG48HERygCYW3hIS5YT11KOwfnghnWy50hvtCwr9qXqch+APGqfkkBnGYNWtPtKm5CMFXFU3hCAR3Y5wmEnrCnJDwbnUqvCAMhSVhK8uFQ0LCn0OX5vN8DGIpdlOzNQaxFLtZcy5E8HY1W2AxhvEiRcNrx50IjtBEwjkh4abQpo6F80PCty0X2sLvQ8KxmksFVyM4V00Fv0DwJWvWOxHcjy41/4ngMkVTOBDBw5ioCYSdwnAYCturc2Hj0B9Gwg6WC/uFhCdCj+bxLgRPYB01/xvBo5hmzWrDrQiOVbMeFiLYTdHwKrgBwUkaXGgPvwsJZ2oQ4bMh4SdWEK4JCR/THNbC4wjepmZtPI7gX4yN1yN4Aj1qTkPwK0VT2B3BfKytgYXjQsIDYZIGEaaFuSFhT8uFl4WR0Bc20Pi+juBaVNScj+AaVIydaxB8XM1kPIbgdYqm8BMEn9WgwoZhfkjYX4MJJ4WEm0PFcuH7IeEcje2VGMEgXqBmOkYwiK2NrZdhBH3YQM3xCG5Hm6LhvQRLMYDnaEDh0pBwqQYUxocHQ8KBlgsvCENhSdhKY+rEHQhOVdOJOxB8VH34HoJz1HRiNoK3K5rCtxGcr8H8ir1DwsKwiQYVjggJ94RxlgtfDwn/pTGdhOAedKs5BcE96FYftsYQlmArNe9EcD+6FA1vcyzGMLbROCbgz4dy00McpYGF9nBnSDjCcmHTMBBG7mB7jeW56EOwl5rN0IdgT/Xl6wj+S00bbkVwnKIpnI3g+xrHmQhuQ4cGFw4MCQ+HiZa7m4++lVtwlcbyAwTftLIrEVyg/myMRRjBjmpej+AJ9Cga3rpYiODV6t+2WIKl2FUTCJVwQ0g4Sc00PIlgL43hIATzsaGagxE8ifXUp88guMrKfoHg44qm8DEEN6KifrXhOgRnayLhNUt5/FNchbXVnIjgZlTUtx7MQXC4mh48hOAw9WsankSwl5pdMII+bKBoeJPwKIL91a/DETyCqZrMZK5A8Fk14/EggoPUt7MR3IQ2NV9EcCPa1LcTEdyMiprvIfiioikcg2AWOtSfdfAEgoM0p5dgKQbwHDWHI7gH49SnnTCMIWyvZmcMYwjbqX/j8SCCg9RsjSEswVaKhteJPyE4RP35JoKrNLdvIzhfTTvuRHCk+tOO3yE4U007ZiI4Q+M4HME9GKfmawj+S9EU/hXBHIxXP3bHCPqxpea2OQaxFNupOQDBY5isvhyH4AFMUnM8ggcwUeNox50IjlSzMRZhBDsqGl4bZiI4S33oxCwEJ2kNZyO4wsp+g+Bk9WNDzEewv5pNsRDBfhrPAQgexkQ1n0HwU0VTeCuCEVyE9+JAHIC9sBd2xo54PrbA+piGbqvfqQjuQpfWsC4WIHi1mlchWIj11IdLEVxqZZchuETj+g2Ck9VMw5MI9tIkKlrbX7G2f9xi9GMYvRjBAlXzVC3ACPowhH4sxiAGMBHbYR+Mw564RuuYgVNxE16OqPox9sHn8D5jax/8GL14Eeao2hc/Qi9ehDka06vwS/RiKzyu6sP4FG7BLoiioa2Ly3EnvomLcQl+hp/hZtyCezAbj2EuBhEEQRAEQRAEQRAEQRAEQTCCn2o9k/Aogv3VvARLsRhbGDsTMBvBcWom4D4Ex2h8P0ZwlprxeBDBQZpARfFMdGM8xmES2tGDCqaqmooKJqMDE9GJ8ejGc7Ed2nAmztd6jsF/4C68GCM4BIdiN1yO92MRlmAAg9aMM/FB3I4dMazqM3g/bseOGNbYXoJbMYwX4j5Vh+M83IcXYokGVtGa2vA1/G9EfdgCN2Mz9Got4zALW+IwnILN/G2L0Y8h9GEEC1TNU7UAI+jFMBZhCQYxgCVYhGH0YgQLVK2FC9GOV+IGVdtiJtrxCtyoOXwL/4ILcIiqdvwBL8S/4UvGSHgp3oeXog134gsVfmmZMA7X4IQKv7WC8DVcr4Wtr/7chIu1prchWIhgBL24HfdgNh7DXAwiCIIgCIIgCIIgCIIgCIIgCIIgCPrwHSv7IEZwtuayGQaxFNupeTOCxzDZGAh7hcHwX+FN4X+F88JweLtlQldI2NsoYWaYUVHUkwPxZRyO72otbbgN26o6C+/39LoxHp2YiHb0oIKpqqaigh60YxLGYTy60YUJGIdJaEcPKtgam+AX2NPKpuM2LNRcvoCj8QPsr+Y3eDlOwyewxBoS2nAvrq/wDisIZ+BIbIolGMQ+Fa6ygjATV1S0lk1xOf4Vd6k/FcxEN16O+VrLj7EPrsVrEGNrGv6EtbAXrtb81sNd+C6OwrCq1+BqLMJEVQMYxGL0Ywh9WIqFCOZb5lfcO5110IthLMISDGIAS7AIS7EQwXw8hnUxEztXuMUKwgZ4BG/AVRjEPhWusoIwE1doQW/CVPXr0wgu0VqmYwSD2Fr9OBHBzahoDVM81VEIejGEIAiCIAiCIAjyZ24MCQkJCQkJCQkJCQkJCZ8Kbw4JU6xCWBCOC10h4bpwabg0XBouDfPCjA6toU3VCC5X3z6FA7EXDsZ3NL9OnIsKTsfd6sfn8W/YCQfgu5rfAivbAKepegcuVzUBXejGeHRiIjowGW2YYpmH6d6Mr6MH7ZiEcRiPbnRhAjowGW2YgvvVxKrFymZilpXtrIUcgBuwncbwfQR3YprmdzKCe9Ct/hyB4B6M03q+g+BHxkDYKSRsb5SwTkh4Y+gKCXsbJcwMM7SICg7FyRrDyzAfwWWa22boQ7Cn+tSOOxEcqbW8FsEibG4MhI4wJ5xjlHBi6A1TQldI2NsoYWaYoZmFiRrXDQgW4B2a15UIvqG+HYDgYUzUGsbjTwg+YAyFA8Nw+HTYPrwonBiWhKMtE7pCwt5GCTPDDM0s/Hv4SdhS43kflu7H4GwWhGmaz1sQPIn11LcKbkBwktZwGoI/YJwxFvYJvwx9oT/8NhxkuTAu3BteaZTwvXC0ZhY6wvvCg2GyxjL+p/x1Cf2hN/xSc+nBHATv1hh2RzAfa2tuz8cglmI3Rf0K61tBmKABhQtCwtLQH96leZyD4Ea0aRw/QfBZzauCqxGcq6hv4TfhorCRBha2DI+GhIXhnrCWxrcThjGE7TSWl2ApFmNzzeldCB7FNEV9C+PDaeHxsK8GFq4JCfNDwvc0tnb8DsEZGtO3EJyv+ayFxxG8TVG/wvOsILwobKSBhbeEgbAwJCwI79K4jkfwACZpTJthEEuxnebydQTXoqKoT2GdMCecG6ZpEqEt/D70hYSEe8N6Gs+GmI9gP43tbARXaB7TMYJBvEBR38KUcE54OPyLJhHOCgn9ISHhCo3nMgSXaHzrYiGCV2t8nbgDwamK+hQmh22tIOwcTtYkwjrhgbAgJCQsCIdqHPsiWIhNNIcZCG5ERWM7CcE96FbUp7BbeCycESZoUuEHYUFISEi4N6yn/k3AfQiO1Twm4VEE+2tcz0Ufgj0V9S2sFc4LD4Y3a0LhlWFxSEhISLhS/fs0gtvQobkcg2AWOjSmKxF8U9E4wl5hVthKEwpzQ0JCwoJwdWhXv7bFEizFrppPJ/6E4BCN5yAEc7Ge4tkVNguvN0roCQeEiVYQ1goHhsPDW8I6VhDaNKlweugL/eGmsJ/61obrEJyteb0NwRyM1zh6MAfB4YpnXzgsPG6UsE1I2NJy4R2hN9wVrgh3hkXhCC0gjA/3hENDRf07HMEjmKp5tWEmgvdpHGcjuAltimdfOCw8bpSwTUjY0jJhhzAUPmAF4diwNLxCCwpd4RXhdWGn0K4+rIMnEByk+e2LYC6mqX87YRhD2F6xZoTDwuNGCduEhC0tE74Wbg0Vo4Qbwne0mHBQeCLMD7eHRWF2eIWx900EP9E6rkbwSfWtHb9DcKZizQmHhXlhepgepofp4e0hYUvLhNvC2VYhnBn+pIWEl4fhcEpos0zoDheEeWFjY2d3jKAfW2odO2ME/djEU70Qu2JHvAhbYGNMwyRrznEIHsAkLaRDfZiMr1lZp5X14K9W7TFM0VrejxsrnGa5CoPhSPwT3oNTrHldOBcVnIbZWsfNuAxvxik40so+iEM8vREsUDVP1QKMoA9D6MdiDGIAQ+jDUixUNQ834TYr2xAzVB2NPi2kQ32YW+H5VhC2wR/VzMP6Vm0DzNNadsN/GqXCQLgWu4UK9kQfhtCPxViMfgxV6LN6nYgX4G6cpfWchDfgMPwHZqm5FzehAxPQhW6MRycmog3TVE3zzByP26zsHEzBZbhCi+nQOH6L6aFSIVa2B27UWtbCo1btEWyLLvzM04j/ZwQLVM2zzLrc9VfWRx+G0I/FGMQAlmARhtGLoBMfRvAeLNZ67sH5eDc+jgPVnI7TPb129KCCqaqmooLJ6MBEdGI8utGJiejAZLRhCn5vZfvin9GLYxVrXjgsPG6UsE1I2NIy4SVhSTgxVCwXjg3DYSctJPw1fNgqhAvCdWFi+Fm4MdwSZoXZ4aEwN/SFhISEhIR0cR+CIAiCIAiCIAiCObjeyio4CDtrDRthEUawq/owAfchOE6L6tAgKtweDsG5OCTcha3wHBxa4Rat5VbsYpTQhl3w0wqL8E/+htCOHlQw1TI99DxBOyajAxPRifHoRhcmYBwmoR3bYF90YwoWqDoKZ+PXeJXm9zC+gA/jHByFYSzCEgxgEEuwyJrxCWyO23GOFlUxxsKm2LrCz60gTMLuuKZCv+XCNOyJdfEkrq7wpBYTDsBF2LvCzy0X3ot/x0sr/NGadzVeg0/iFFWT8Cesj/3xA81vGuagF+t7esPoxQgWqJqPYCGWog9DGMAgFqMfQ+jDCBaomqdqAdbFDjgBwW64UVE0mnBWGAo/CP8Rrg2Lw7uNnV0wgn5souZYBH9Au+b3LgQL8FvcgrswG49gLhYhCIIgCIIgCIIgCIIgCIIgCIIgCILbtbiKoqGF7bAvpuIRfL/C/cbWZXgTzsV7VHViFrbAIbhA81obs7Au3oZve3rjMAnt6FE1TdUUtGEyOjABXejGeHRiItrRgwqmqpqKjfBcXIsj8ZCiKFarrTGEIbxQzdsRzMF4zet8BNegoiiKpvcVBBeracNMBCdoTtMxgkFsrSiKlrARFmEEu6p5HYK5mKa5dOIOBB9VFEVLOQPBtVZ2NYLTNJeTEdyDbkVRtJSpeBLBa9XsghH0YxPNYTP0IdhTURQt6YMIfo82NZci+JLmcCWCbyiKomV14y8IDlbzfAxhCC/U2A5G8CTWUxRFSzsUwX3oVPMVBBdrXD2Yg+AwRVG0vHbcgeAoNRthEUawqwa0FZ9EcB3aFEVRLPMmBI9jspozEFyrwYRdRhj+KNdiW0VRFCu4HsFH1UzFkwheq0GE9vC7kHCGoiiKUaYj6MX6aj6I4Pdo0wDC8SHhgTBRURTFKvwQwefVdOMvCN6qzoUNw/yQsJ+iKIr/xouxFIuxhZpDEdyHTnUsXBYSLlEURfE3fAPBN9S0448I3qtOhX1DwsKwiaIoir/huRjEUrxUzRsRPI7J6kyYEO4LCccqiqL4H/p3BD+0susRfFSdCZ8OCbeFDkVRFP9D62ABgteomY6gF+urE2HbsCQsDbsqiqL4O30EwU2oqLkSwX+oA6EtXBcSzlYURfEPmIhHELxJzYuxFIuxpTEWDg8Jj4SpiqIo/kFHIbgLHWq+jM9hLWMsvDrcHd6iKIriGRiHexEcZoyF9vDi8KqwheVCp6IoitXgYAQPYYIxEv45PBwGw/1habglbKMoimI1qeAWBB8yBsIrwnA4NYyzTFg7/DA8FKYpGl5FUdSHf8JP0YcZ6EUvhtGPxRjEAJZgEZZiIYL5noFwJSZUeI0VhLXwZ3yswucUDa2iKOrHgxjBc/ydPsD1n+YVWIAR9GIYi7AEAxjEYvRjCH14osIpYQE+XuEso4QfYkmFNykaWoeiqA8HYxP04QIsRg/aMRGdGI9udGECOjAZbZOIqimqpvmfuTN8HD14xKrNwTaKhtehKMZeD85SdTy+6u90Kk5FmIoKetCOSRiHCehCN8ajExPxZIUlYQmmWbW10acoimI1+CKCG9FmDISbw1eNEtrD7HCmoiiKZ2hnDGMI2xkj4cgwGLa3gnB0WBJeqCiK4hlox0wEZxhDoS18K/SHb4TTwo/CUDhCURTFM3QCggcwUR0Ie4RPhfPCieH5iqIonqFNsRDBfoqiKJrY5Qi+qyiKoonti2AhNlEURdGkJuA+BMcoiqJoYp9BcBs6FEVRNKltsQRLsauiKIom1YbrEXxBURRFEzsCwSOYqiiKokmtj7kIDlQURdHELkTwE0VRFE1sd4ygH1soiqJoUl2YheBERVEUTWwGgj+iU1EURZN6HgYwgj0URVE0sZ8j+KqiKIom9nYEf8W6iqIomtQ0PIbgnYqiKJrYlxH8ChVFURRNahcsxWK8SFEURZPqwK0IPqEo6lCHopFtgn/HtvgjHsAwFmEJBjCIxejHMHoxggWq5qlagBH0Ycjf7wRsj9k4XVHUoYr/2x7cx+hd2AUA/zzPPffaXntlBUphDVdsmkrbicQyt8C6DKbAYhBc2ZoBxgUCSNKiYTQGx2jN/iBjvMw6HZAoY65DJ5Ms4AQLVByDMKkIowxBpKzdDWbfrvfau6+NR/LrXV+glOs9z3PfzyfVsi04wfjoQT/60IsB7MYe7EJguxGDuAjN+G38QEpVqCTVqgtwPwLfw48wjAZMRSPa0IwWtKIRU9GAaSihw4gOlDANDQ7f/yDQKaUqVZJqURtewMm4Eau9/6agCa1oQTPa0IipKGO6ER/ETZiKT2C9lFJ6n3wFgWfQoDrcgMDTKEmpCpWkWrMIP0YDPoKnFM7FXAyiB/3oQy8G0Y0h7DRimxE7MOzITMF/YRYuwj9IqcqUpFpSxhP4TdyBFUa7B5d473ZhD3rQjz70YgC7MYSdCGzHd/HPCldjLX6KU7FHSlWkJNWSK/F1bMUC7DDacnwUFUxBE1rRgiZMQQXtKGO6ER0oOXwrcIdCI17APFyBO6VURUpSrTgeL2IGPo2/9/6bhgZMQRNa0YJmtKGCdpQxHU/gJ0a7GOuwBfPQI6WUDtO3EHhIdSvhRwhcL6WUDtNSDKMHc1W/pQhswweklNK71IxNCKxSOx5G4GYppfQu3YTA82hUOz6EIfTig1JK6R3MQy+GsVTtWYfAXVJK6R08gsBdalMn+rEHp0oppYO4BIG3MFPtWovA/VJK6QCOQRcCl6ltx2EnAh+VUkpjfAOBx1FS+9Yg8K9SSmkfZ2AI/VigPrSjC4HzpZTSXhVsRGC1+nItAs+hQUpp0vsCAi+jVX1pwisIXCqlNKnNwS4EzlOfLkXgNTRLKU1aDyDwbfWrjGcRWCmlNCldiMAOzFbfzkfgTUyXUnpnwezgL4MPGCO4LfgN+wh+Pbg1+Lvg3uCKoMXEa8dmBK42OaxHYI2U0jsLFgYRdBoj6A6We1twZTAUfCdYGXw52BxsDGaYWLci8DQaTA5LMIxuzJJSOrRgYRBBpzGC7mC5vYK5wUCw0j6CY4M3grUmzmIMYg9OM7ncj8BaKaVDCxYGEXQaI+gOltsrWBV0BY3GCL4QbAvKjr4ynkTgFpPPfAxiAPOkdBRU1L6VwXajNSkswEslBu3vP9GBE4LPYT4G0Ys+9KMHg+jGMHYYsc1ed7Bthf/XjUH0oB996HVwV+PD2IwvmXxewj34A6zBZ6Q0zipq3wxUHFwTehxYjxHN+ATOcZiO5zEsdXCD6MYQdiKwE/ONWIFdRish1L8v4jNYhlvxlJTGUUXtu7HEf9tHcJnCFix2YHMwhJ/jy1iHCtrQjBa0oglT0IBpKKHDXr9gK36MdlQwBU1oRQsaMcOImQpdCPyLwnTciIX4pPr3M6zFdbgH86WU9hcsDCLoNEbQHSy3V3BeMBwsNkbw/WCD8dWEGTgWc/ErOB1PIrBGoR1dCJyv/hyH6UY7FkMIXCultL9gYRBBpzGC7mC5vYJysCF4ITg9KAcdwZpgMFhqYizBMLoxS+FaBJ5DWX35LrbgTKPtQmCNlNL+goVBBJ3GCLqD5d4WdAT3Bn1BTxDBS8F5Jtb9CKxVaMIrCFyifpyLwE6cpPA7CAzjdCml/QWloMkBBI1B2RhBazAvOEF1mI9BDGCewqUIvIZmta8NryKwQqENryLwp1JKde9uBNYplPEsAivVvpsR+A9UFL6CwDNokFKqeydiN4ZxhsKnEHgT09SuhRjAED6ssAgDGMIZUkqTxs0IPGq09QisVpvKeAKBrymU8W8I3C6lNKl04JcInK2wBMPoxiy15woEtqJD4UoEtmK6lNKkswqBjSgrfA+BtWrLTLyJwDKF4/G/CPyelNKk1ILXEbhYYT4GMYB5asc3Efgno30LgYeklCa1yxF4FU0KdyOwTm34GIbRg1MUlmIYPZgrpTSpNeAFBK5WOBG7MYzTVbdmvIjAnyg0YxMCq6SU0l4XItCFdoWbEXhUdfsSApvQrHATAs+jUUopve2HCNyg0IFfInC26jQPvRjGxxXmoRfDWCqllPZxFgI7cZzCKgQ2oqz6PIzA3UZ7BIG7pJTSATyIwFcVWvE6AstUl88h8BaOVbgEgbcwU0opHcAiDKEfcxUuR+AVNKkO07EFgd9XOAZdCFwmpZQO4ZsI/I1CA36CwFWqw18hsAElhW8g8DhKUkrpEE5GH4bwawoXIdCFdhNrCYbQj19VOAND6McCKaX0LtyOwPeN9kMEbjBxKngWgT9TqGAjAqullNK7NBM7EPi4wlkI7MRxJsZ1CLyGKQrXI/AyWqWU0mH4IgJPoaTwIAJfdfTNwS4EzleYg10InCellA7TVGxF4AKFRRhCP+Y6uv4RgXVGewCBb0sppffoGgQ2oaJwLwI3OXp+F4EdOFHhQgR2YLaUUnqPGvEyAp9X6MQylBw96xC4RqEdmxG4WkopHaHPIvAztJk4JXwaDQq3IvA0GqSU0hEq4RkErlM9FmMQe3CalFJ6n3wSgW04xsQr40kEbpFSFStJtWgDzsQb6MJuDKAXfRjAbuzBLgxjhxHbjNiBYXRjED3oRx96MYDdGMJOB/fXuAybcSp2SalKVaRa1I3dOAknOToC243YjsAstBmxFrukVMVKUq1ZivXowzJsxVQ0og3NaEYbGjEVDZiGEjqM6EAJ7ahgCprQihY0ow2NmOrQnsOHpJTS+6gZmxC43tFVxgzMwFycgs/iXCmlNA5WI/A8GqWUUp2ah14MY6mUUqpjjyBwp5RSqmOXIvAWZkoppTp1DLoQuFRKKdWxOxF4HCUppVSnzsAQ+rFASinVqQo2IrBaSinVqz7++D4ebeEFtEgppXoUnBzsDqKbs6WUUr0KHggi+FsppVSvgouCCHYEs6WUUj0K2oPNQQRXSSmlehXcFkTwdNAgpZTqUbA4GAz2BKdJKaV6FJSDJ4MIbpFSSvUquCaI4PVgqpRSqkfBrGBbEMEFUkqpXgXfCSJ4UEop1atgVvBm0B3MkVJK9SyYGfyWlFKqVsGU4OFgkTGCu4Nl9hGcE9wXPBs8FXwt6JRSOmrK0nvViLMxw/4+gk5vC/4QD+HnuAl/jrn492CxlFKqZkFHEMFZxgheDK63VzAr6Av+yD6CUvBYsEFK6agoS+PtUwj8hX2UCNyGM4PjpZTGXUU6UjcEvzDabIVTsLlEn/29ZMQp6JJSGlcV6Uj9FK8a7RyFEoYc2JARZSmlcVeRjtR9JTbYR3C5wuuYEzSUGDJapxGvSSmNu7I03n6AFlxsf5/HcyXekFIadxVpXJV4JbgdXw9a8QjacQUuwLlSSqmaBdOCzcESYwTrg6u8LSgF1wabguGgP3gs+JiUUqpXQVlKaUL8H/jqK/3/0b8aAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE3OjUwOjQzKzAwOjAwALN1TgAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxNzo1MDo0MyswMDowMHHuzfIAAAL9elRYdE1PTCByZGtpdCAyMDIzLjA5LjMAAEiJfVZLbhsxDN37FLpABH4lctFFHKdBUcQG2jR36L73R0lNoxkjQscWMZp5Ih+/9qnk9ePy/fefMi+6nE6lwH++7l7eGQBOryVvyvn55du1PL09nj+ePN1+Xd9+FqbCGmfic499fLu9fjzB8lQeoLoLSytSXVRMClQY136UEoi1m6hx4do6KNECyAnkSsamsasdu0BfACWBUiFeWytURUiCw2egbhq5KWgrWJGg5ftPwLZxtKbdPIDQueNKYy+3BEJXVQrTLNb6iqNtQNTW1TJQJIa8su1hG0IRKfgAugKuAomRoOSmqOypvGGztlKJGNapqoJBG8jGXZY6MzsRIUEQTuts1iNNC2SmR6oJcBAJpLC2tnIdMz9aG4NKvjd28qVxHSqdUDHziA0xPFsA22ApRCQeQAq/aKmxB5DCNAGmE84MbemNjVgiUxdNYI9CXjrjEcpwlqIgNBMO2H2lkWDEvIfKOMNVya2tnKFMTo9adBtp7k4R/RWQRmVQi7qJ3FA1R4vTCyRv9RskvcmAijiv/KHRPFSBLGKUbYTo5raC6qaV0bFHyjUaDddlRG1QRQPwPpBmjZZK+0B6B2ZO84S8LiMaLRRVAZ5j4KFFbHN2rKCZpIeMeZdm22zgdRNxpim9jv71UfGowm0VVc5EhS/amVVyzljW0wpJm313MouxUyFKXlcz7vl6uZui21w9366Xfa5ijMyYrl9fvvA+Q/Ph3HJsucg+DzGW7lMPY7V9tmGsvk+w3NrQj/u0wli+jySJhcfJIylwHsC0GALpMEkkBU6W0YGSAifRyIikwMk1eiq30eGHXpcUOBlHU0sKtEP3UgqcjKPlME/RsR8xbdHkTBlazL46dJikoD3QyTkETc6UnEPQ5EzJOQRNzpScQ9DkTBnmxEzOlDFOPZMz+UhU/u4ecz1qQLL67h/jSHqU2l3mOEujl+kSj6AfcsnyL3o7ZPDvhzhkVR5rMPcf/wvi/vQXLmGQpTIWEdsAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAZp6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAKJFVUbtu3EAM/JWUdwC14PvhgwEDdpHuqlRBKn1ASjf+eJMrpEghrTQ7HA6H77/f395+/qHndd6eJ5+345TzvD3v+znl/vff/37Jya/Pe/OH/v9Jzx9ftwNXlYo66Co1TXgctCLVEmR5oPFGMMwMeImmX5x0i4K5kbg4ZB4OrciaJPDAZrNhbagMSeHRfCNTaLqTpw+LnQQFDl5ZlJcWS5RvSLW6rr+Q++7QRVTVgCzj0BikLSDtMqGihmypUlxlhKUEh68gj2lHiVgXKdO3zwoUkZFikmHxMsOkbdNllKSHIdSZRTIju07bHAoNpGI+dbZcsIPClVI8xmMRVyvhiuI20lXF1Km2MyfaysrMEy5jIk/zIGGGmbByu3FhHI0SwbHcYQvH9Kno/e25tDOjvSOkuBISN/TeEXEfj8nOWnIM9w7EaWMY2jvijozVGrFlITJCmt1vC3FKWhuKTpU2UsWZYAt7ToM7fP566X4gs/TPj5feM7D32oGzt/L1DWClkUPU6iRcAAAAAElFTkSuQmCC) |
関連化合物
ヒル方式による化学式 C21H20O11
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |