モル質量 of Zabofloxacin (C19H20FN5O4) is 401.3916 g/mol
C19H20FN5O4 の重量とモルの間で変換します
の元素組成 C19H20FN5O4
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 19 | 56.8530 | 水素 | H | 1.00794 | 20 | 5.0222 | フッ素 | F | 18.9984032 | 1 | 4.7331 | 窒素 | N | 14.0067 | 5 | 17.4477 | 酸素 | O | 15.9994 | 4 | 15.9439 |
モル質量を段階的に計算する |
---|
まず、C19H20FN5O4 内の各原子の数を計算します。
C: 19, H: 20, F: 1, N: 5, O: 4
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, F: 18.9984032, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C19H20FN5O4) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(F) * Weight(F) + Count(N) * Weight(N) + Count(O) * Weight(O) =
19 * 12.0107 + 20 * 1.00794 + 1 * 18.9984032 + 5 * 14.0067 + 4 * 15.9994 =
401.3916 g/mol
|
化学構造 |
---|
![C19H20FN5O4 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAACbCAYAAAD/ayfkAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEg4Dj+AYwQAAAAZiS0dEAP8A/wD/oL2nkwAAHl5JREFUGBntwQugHnLBP/DPc87uhm0s5r6NCvGyIcVLGMql+yrFlFiXN5HKWXnft6neGl1JMcqbSxfr4jK5rTdhCh2s5rLM3JJct2E3Z2fn+99/jxwj953zPM/x+3wURdFltsC+iqIoerDROBUd6MDXFUVR9CCDcQRuQRB0IPiToiiKHmA0JmMBguA+TMLPERypKIqiQfXDOFyPIFiGaRiL3qouR7CXoiiKBvN6TMIjCIJ5mIwtPNs9CEYoiqJoAH0xFtMQBEErxqO/f60vlmEpeiuKoqhjm2ISHkQQPIrJ2NoL2xzBbEVRFHWoGWMwFR0IglaMx0Av3n4ILlEURVFH1kML7kEQLMYU7OTlORLB9xVFUdRYE8ZgCpYiCGahBUO8Mt9DcJSiKIoa+gUeRRAswU/w71adixC8Q1EURY1U0I7g72jBUKveXxFsqSiKokb6YyGChTjQqteMJ9CBAYqiKGpoEP4XQTAZfaw6myD4u6IoijoxDosQtGITq8YeCK5QFEVRR7bFHAQPYS+v3McQnK4oiqLODMHFCNoxEU1evuMRHKMoiqIOVdCCZQimYrCX51cIPqAoiqKO7Y4HENyF7bx0MxBsryiKos5tiGsQLMZHvTSPIRisKIqiAfTFCQiCM9HfC1sHwTxFURQNZhwWIrgewz2/NyP4k6Ioiga0DeYgeBh7e24HIfiZou40KYrihczAtjgXa+FiTEKTZxupao6iKIoGVkEL2hFciMFWdjaCjyiKougBdsMDCO7G9jr9EcEuiqIoeogNcQ2CxThU1YMI1lMURdGD9MUJCIKfIViEiqIoih7ow1iEILhVURRFD7YN7sHDuFJRFEUPtwkWoQObKupOs6IoVpX52AzbYBH+T1EURQ+2I4KH0FdRFEUPdz2CAxRFUfRwH0fwe0VRFD3cQDyKYEtF3WhWFMWq1oaNsR2W4hJF3dgQm1pZX7zJC1sTe2AfDFUUxT9tjWAeVlPUjYn4sZUNRzy/g/EorsIleBjjFEXxT39AcIiibkzEj61sOOK5vRZteLtOW2ILRVH808EIrlXUhSYvz/64DhfodDNuURTFP01hwJ85bDELRylqrpeq3XGBTgM8v+G4VVEUz2cxC3+Hz+DjGK+oqV6qbsY3dRqGPTy3pRioKIoX8gMciQ+Sz1N5VFEzTaoewJW4ElfiOs/vdmyrKIoXULkdl2M1HKioqSYvzgbYG2ur+hU2wWd0WgNDFUXxTJNVfVJRU01e2Cb4BobhAqyB+/FOfAr34gbMxm5YCz/Aaoqi+P/OxX3YguykqKn+WM3KmjDEynrhNxikUwWbYCT6qJqK4CqsoSiK5fI/JOQsRd1bF2fjbDR7fsMxB0Er1lYUr3rZiLSTJWSooiF8Czt7YRthNoKbMUxRvOrlQhLyOUXdGolTcSB+h7W9OOtiJoJZWF9dyQAygjR5SprJCEXRJbI/CbmdNCnq1vp4CwZ7aV6DGQjuxAh1I/uQkI97SoaRkCZFscqlidxJQsYoeqRB+GMTD13H9LCZupB9yN/JA2QdK2QYCWlSFF0iR5MpZBtFj7XGdH4ZEu4LW6i57EOuJd8mZ1shw0hIk6LoEtmSHEp6e0rWJQcoeo4wIFwWEh4J26up7EOuJYPI/WQPMoyENCmKLpHDScjnPSU7kTsUXa5JN6mwCPvjPAzBZeFNulW2JJ8nh3pKZT6OxvfRW1F0vavRQjZW9GyhT/hFSFgQdtdl0p+MISeQu0hIyJ/JPuRaK6RCriDHk5AmRdElcjj5KfkqucgK2YncoehyvXSzCm3hADyBD2Fq2K/C5VaJbIp9sA92RT+dHsDFuMhKKiH/gT8qiu7xddxC3oUHrZCBOAlzcDvmYA6VRxSNLVTC98LfwnAvU+gb9gzfWarXjb21tZGQkGXkGvJfZDtS8ZTsQ661knyDhDSRz5F1FMUqlcPJT62Qd5N7yJ7kDrINCQkJCQlZTG4mU8gkMp6MISNIs6IxhEpY15PCYeGvYVGYF84Ia3uGsE4YF6aER0NCQt7nnCvIT8mBZKjnlDXJ660k/clocgQJmUXWVxSrTA4nP/WU/IZcRO4gryGHkUnkF+QG8igJCQkJCQkJ//17zME0TEYLxmI0+ivqUzg03Bt2Dk1haJgSrgtN4Y3huPCXkJCQ0BFuCP8TdgrNXrEMIdeRkLvISEWxSuRw8lNPyUiymNzhOWUoeRM5kHyJnEX+QB7gbX9BEARBELTjDkzDKfg8jkIfRW2FW8NHPE1YPcwNbwmnhYSEhWFaOCJsaJXJ/qSPFTKI/IGE3Ee2UBSvWMaR71pJjiZXeHn6YgTGYDxOwDTMQTuCIAiWYKaidkLv0B428wzh8vDJsHv4Rtg99LbK5aOkg1xI+lkhq5H/IyH3k60VxcuSPcgBulcfvBZvw+E4BUGwk6I2wpohYX3PEKaGFl0u25AHScjvyepWyAByKQmZS3ZQFC9JNiQPkpC3qa0LEHxHUTvhkbCzZwg3h7G6RV5P7iUhV5E1rJA+5NckZD55s6J4UdKbTCch00iz2vo3BPMwQFEb4SfhnFDxpLBnWBiG6jYZTu4gIa1kLSukFzmLhCwgeyiKF5QfkJC7ydpqYzt8RKdrEHxYDxOawp7hyPDx8Fr1KKwXZoXLwzHhB+GxcKBul43IbBJyMxlmhTSTM0lYdh8b7akonlM+SEIWk+3UxoZYhkUYourDCK7Rg4TVwu/DzDApnBLmhRb1KPQL7w/HhE+F4Wom65KZJGQWWd8KaWLJiex2E5bgHYriWbIVWUhCDlVblyA4UlV/PIJglB4ifDX8MfT1pLBVeCJso3gheQ2ZQULuJCNUVfAtBO04SFE8JauTW0nIWWrvnQhmoaLqOwhO0UOE68OBniFMDRMUL0aGkOtI6LiNkZvqNBFBOw7R/QbjLTgc1+BeHKWooVTIL0nIDDJA7TXjbgS7qXo9OvA41tADhLlhJ88QvhsmK16sDKTjMg65FvdjK51aEHTg07pGL4zA/piIqZiDDgRBECzDVooayQQSMpeMUD8mIvi5Tpcj+IQeINwV9vYM4fRwnOKlGDoQv0XwILbR6ZPoQAc+65UZhr3weZyJG/EEgiAIggW4Bqfif3AFgqmKGui1OydOJ8vIvurLMLShDeupej+CP+sBwkXhWE8TmsKtYZziJeuL8xDMw446jccyBJO8sN7YEuMwCVPxDwRBEATBfZiKSRiHLdFkZUPxKIK36LGyEdnNSjKYvFntbIAH0MG4o9SnXyP4oqo+uB/BmzW4sFeYF/ayXOgbJoW7wmqKl6UPfoFgAXbX6YNYiuA4ndbDGByBM3Ez2hEEQRDMx3RMxhHYGQO9eBMRXIOKHilHkZADPCW7kVlqozeuQvBbNKtPeyO4G82qvobgDA0m/Fs4JwzypDA23Brmh4XhojBS8Yo048cIFmIvnd6HNgRz8CiCIAiCNszETzEB+2BDr9xA3I9gfz1SjiIzyN/JICtkNzJLbZyE4G6srX5VcBuCfVRthHYswVANIgwKs0PC1zxD6BeaFKtMBScheALv1OndmIulCOZiOk7AeOyM/rrOpxHcil56nBxFziCnk+9bIbuRWbrfAQiWYHv1rwXB+TpdhOAoDSBUwq9CwozQ33JhTUWXquA7CNrwXlVbIbgLQ3W/PrgdwcF6nBxFziDrkEfIDmQ3MosMJF8k7yfbkcG6zhuwAMFhGsPaWIx2bKzq7Qhmo6LOhS+GhLlhhOXC6uGWcGbor+hSxyFYinfhnQguVDsHIrgLffUoOYqcYYV8irSSPcgssi0JCQkJmUtayRQyiYwnY8gI0uTlWR23IDhLY/kJgi+rasZdCPZQx8LuoT0sC2+zXKiEX4SEP4cBii7XgtlYD59DcILaacINCD6jR8lR5AwrpJlcT84gs8gIcjz5FZlBHichISEhISEhi3jTFJyHb+ET2Asj0cu/VsEvEfwZAzSWXRD8A71V/TeCKepU2DA8GBK+5Enh6JAwL4xUdJvVVZ2M4NNqax8ED2FNPUaOImd4SnYkS8ks/1IGk9FkLGkhk8k0Mod0MOgvCIIgCJbidlyKH+CzeAe+iWAuRmpMMxG8R9UwtGEp1lNnQu8wPSRMC82WC28JS0NHeJeiJi5DsK+a63sRB13OI1/SY+QocoaV5DQyi6xPVvOiZQ2GboOxmIDT8DvcjWUIgiAI5qID+2lcn0ZwmU6/QnCMOhO+HxLuDmtbLqwb7gsJX1HUzBwEr1dz2YF0kAVkXQ0t25AdPK9cTkLmklYyhUwi48kYMsKL1xebYz8cgRNxGZ7AUqyrca2JBejAa1XtieBuNKsT4YCQsCRsZ7nQO1wZEn4bmhU10QttWIa+6kLOJSHf17AymNxBlpBdPaf8liwhISEhISEhIfNIK5/5Nr6Gj+It2BAVL+xXCI7R2H6I4BuqKvgrgv3UgXV4QxtzQsJhnhRODAn3hKGKmtkUwd3qRl5HlpI2sqmGkybyGxJyLenrBWUwGU3GkolkCmkl80lI2P5KBEEQLMEtmIrv4FN4GzbRaS8Ed6NZ49oewcPop+rzCKaqvTVx27o8NJPjPSl8ICS0hTcrampvBP+nruRHJORnGk6+REIeIcO9YhlKdmSHsfhvnImrcT+CIAiC4Fc6VXAbgn01tlYEB6paC4uxDJuonQp+iWAGBlguvC48FhI+pqi5TyI4VV3J+mQh6SCjNYyMIe1kGXmrrjcQ/4Z34/M4BdNwtJUdjeACje0wBFfpdDaCr6idCQjmYoSq1cdzbgePhjMUdeFbCFrUnXyDhFyqIWQj8hAJ+aL6sjYWYxk20bgGYC6CrVTtjOAf6K377Yal6MA7VVXwS2RbLgkDFHXhfATvVXcymDxCQvZQ19KX/ImETCVN6s/ZCL6isX0Pwdd1+guCA3WvYbgPwbE6fQ7BPIxU1I2bEGyrLuULJORPpKJu5TQScidZS336dwT/QG+Na1Psh2adJmEJgrloxRRMwniMwQirVm9cheC3aFb1ZrShA+9W1I0KFiJYQ11Kf/I3EvJedSkHkpDFZJT6NhPBe/UcQ3AngjYEQRAEQTAPrTgHX8NHsSs2QMVL8z0E92BtVevi7wj+R1FX1kfwoLqWj5Gl5Bh1p/e2zL+RhBys/h2OYJqeoQm/QXAt+mIwRmMsJmIKWjEfQRAEQRA8gTmYhslowViMRn8r+wCCJdheVS9cieD/0KyoK7sg+KO6lt5kFNnIStKfbKB2BmMO/RYz9csaw5pYgA68VuP7EoJHsIkXNhQ74kB8CWfiajyAIAiCIAjacQem4ed4AsFkVFR9F8E9GKqoOx9BcJa6lwmkg+zmKdmLzFQbFZyL4Fr01ThOQ/BNjW0PtGMZ9vbK9cUIjMF4nIBpmIN2BEEQBMF0vA9BG3ZS1KWvIpio7mUCuYPcTPpYIXuRmWrjvxE8guEayzYIHkY/jWkjPITgGF2vD16HfXA4vovZaEewAMEnFS9aX93r5wgOUvcygZxGLiNftEL2IjN1vz3QjmV4q8b0JwQHaTx9cR2CqWhSOyciCM5SvCiDMB0duBVHYH1d708I3qzuZQI5jWxO5pMRZC8ykwwg7yOjyJq61oZ4CMF/alwfRTBd4zkVwV1YS21tjg604TWKF+WdCIIgWIZrcQy21jXmIlhH3csEcpoVMolcSPYiM8m2JCQkZC5pJVPIJDKejCEjSJOXry+uQ3AhmjSu/piLYFuN40AEizFKfbgSwXjFi3IKgu/hEEzBYwiC4C5Mxv7o65UbjOBxDSETyGlWyGrkbvItMpNsTc4lfyELSUhISEhISMgC8meOPBHH42MYg+Fo9vwmI7gLa2l8JyL4vsawNRYi+Ij68UEEMxQvqIK/IdhGp/4YgxNwL4IgWIipGI91vTzbI5ihIWQCOc1T8i6yhMz0LBlMRpOxpIVMJtPIHBIS9pyJIAiCNszBNExGC8ZiND6KYDFG6xk2Rwcew+rq22DcjuAU9aUPHkDwRsXz2g7BPah4bluiBdPRgSBoRysmYrQX7wMIfqmuZRPSj0wgp1lJLiQzvSQZTLZj/ffii/gRrsC96EAQBEEQPI7gI3qWKxGMV78qOBfBjeiv/hyH4HTF8zoWwUlevI0xHlOxBEEQzMEJGIPentsxCI5Tt7IRuYv8nmxAhlpJBpINrDr9sCXegaPwfVyCOViARRio07b4rMb2QQQz1K//QvAIhqtPI7AMizBE8ZxuRLC3l2cA9sdk/ANBEDyCKRiHQVZ2OoLx6lLWJ3NIyNVkoNq6EsF4VQPxODrwOo2rDx5A8Eb1Zw+0Yxneqr5dguBIxb+0PjrwOPp55ZowGhPRiiAI2jEdLXgdrkSwh7qT15BbSMg1ZHW19yEEM3Q6FcG3NLbjEJyuvmyIBxH8l/r3LgS3oqJ4lk8i+KWusRk+i8uxFEEQtCH4N3Ulg8gNJGQGGaI+9MEDCHZQtQ2CeRigcY3AMizCEPWhN65GcCGa1L9e+Nu/c8tUdlY8y8UIDtb1BmMszsSjWIZ2PI4TMEzNZU3yJxIyi6yjvhyP4HSdrkMwTmO7FMER6sMpCO7CWhrE3bSEhJ8rVjIQi9GOtXWvjyN4EEGwAN/GemoiA8iVJGQ2WU/9GYFlWIQhqg5B8AeN7V0IbkVFbX0IwWKM1kDCsNAWngjrKJ7yHgRX6X4XIDgU22AKOhA8gTOxqW6T/uR3JOQeson6dSmCI1T1x1wE22ocA7CaTr1wL4K3qJ2tsRDBIRpQODckfEHxT/f+gG9czV6f1L36YyE6sL5Ob8CZaEfQhjPxel0qfciFJOReMlJ9ezeCW1FRdQKCH2gcZ+EmvFanE9CBRWjFFEzCeIzBMF1rEG5HcKoGFd4aEu4OzYo0kftJyOa61/4IrvWvjcBkLEWwDFMxyqrXzKCzua+VPEi2UP964V4Eu6raHB14HGuof/+B4HFsqao/bkI7giAIgiCYi1ZMwSSMxxiMQJOXr4JfI7gR/TWoUAm3hYS3KbITCbld9zsVwX96fpvgBCxG0IGp2MGq0YyfIfT7B3/ZSuOYiOBnOl2B4GPq2xuxBMGBOp2O4DZsjJ0xHpMwBa14FEEQBEEQLMEcTMNktGAsRqOf53cMgvkYrsGFlpBwviKTSMi3dK8K7kWwtRdnHUzCQgTBdOzu5atgMoJHsb3GsgGW4gmso+oABDPUryG4E8G3dfo4ggXY0vMbjNEYixZMxjTMQQeCIAiCYCnmYBomowVjsRsmogPBlXqAsHZYEtrDxl7dcgsJeYvutQOCu710QzER8xEE07G/l6aC7yNYiF00pvMQTFDVBw8g2FH9acIlCP6APqp2wBIE47wy/TAC+6MFkzENc9COIAiCIAiCDrRhmB4g/DQkHOvVKyNJyDzSW/f6CoITvXxroAVzEQRXY39UvLBJCJ7AWzWutyK4C82qJiH4X/Xnawjux/qqhuAOBCfoWn2xOfbDkbgCwVIsw3Sch+ALeoCwS0i4L/T26pTPkJCzdb8ZCPb0yg3EEbgPQfBnjEOzf+1YBG3YT2OrYDaCt6kagWVYhCHqx37owFLsqqoJFyP4I/roXoOwEB3YTNXeCO5Gsx4gzAwJ7/HqlN+RkPfrXhuhA4+jr1VnNRyBexEEN2Eceul0JIJ2vF/PMAHBeTpdguBI9WFTzEPwWZ2+iuABrK82TkdwvKoKbkPwNj1AODzMD5/w6pM1SRtpI4N0r08hmKJr9ME4zEYQ3IGv47MIluFDeo61sQTt2FjVOxHciora6ofrEZyHiqr9sAzt2FPt7IDgYfRTdTSC8/UAYUBYLfQKm4aNQ8XThLVCk6cJA8MAjS0fJCG/1f0uRXCQrtUbh2A2gqADHThUz/MzBBNV9cLfEOymtv4XwV+xpqqN8TCCo9VeK4IPqVobi9GOjfUA4RPhoXBruCPcGfbypJAw3NOEH4eJGlt+RkKO0L0GYgnasbbu0YSPYzEW47t6pl0R3IfeqiYi+Lna+QSCBdhSVT+0IjgfFbU3HsGVOv0EwbEaXNg3zA2jPSkcEBaE4ZYLCcM9TfhxmKixZTKZT0bqXmMRXKH7NaOiZ7sJwbtVDUMb2jBM99sBSxAcpNOPENyGNdWHgZiPYCtVuyC4D701sHBu+KpnCJeG/7RcSBjuacKPw0T1JVuTQVaS9cimVsimZKSVZCOyke51JoLPKbrCEQgu1elcBF/QvYbgTgTf1Wk8gkXYVn05CcH3dJqJ4N0aWLg5vMczhK+HMywXEk4N3wzfDN8MN4WJ6ktuJvtaSVrIOVbIVPIY2cBTciw5WfdpxkMIXqfoCoOwEB3YTNXeCO5Gs+7RhEsQ/BF9VG2DRQgOVn+2QDAfq6n6NIJLNbAwK7zLM4Svhp9YLiRMCIeGQ8Oh4eowsUnj+Ru+q3bejLVxO/6q6ArzcQ4qOEzVZZiNjbC37vEV7I0H8F60YQh+jf44CWeoP7fgaqyJA1SdOYqbrqBv2FTjmoPXe7bNMVuncyr8sMIPK/wQsy3XpPGchNFkX7Wxv6rzFF3pFFWHoB+CH6p6n663HyZgGQ7C39GEszEc1+Kz6tcpluvHR1XNv57rdmFXjNe4zsEnwzBPCttjH/xSY8nN5BpyPjmfnE9uJudYIVPJh8m7yZ1kADmWnKz7zEKwi6KrtSL4kKq18Q4061qb4GEEn9PpywgewAbqW79z+M0yHgrbWy7sEBIeDv00oFAJJ4QHwznhgvBIONSTQsJwTxN+HCaqL7mZtJBdya5kV3IKOccKmUo+bIVcTL5KjiUnk+3ID8jepK+usSmCR9BL0dXGI7hS9+mH6xGch4qqPdGOZdhLAwjfCAk/9KTQGhI+pIGFjcM7wj5hiKcJO4a+niaMDBuoL7mZ7GslaSHnWCFTyYetkE3JPHIGOZkcR0JCFpKpZDwZZtX5LIKzFN1hIOYj2Er3OBXBX7GGqo3xMIIWDSKMDMvCojDYcuGwkHCVotZyM9nXStJCzrFCppIPe0omkqXkZPIGciy5gYSEhLST6aSFbO6V+T2C9ym6y48Q3InTMAFjMQprWvW2wZ+xpap+aEVwASoaSJgWEg63XBgQ5oWErRS1lJvJvlaSFnKOFTKVfNhT0pf8lZxsJdmQfIJcTJaQkJCQ2eTbPLQrennxhmAp2jBI0R2a8UcsRBAEQRDMRSumYBLGYwxGoOLladLpRwhmY00NJrwnJNwSKpYLJ4WE7ylqKYNJHytJf7K6FTKQ9LGSDCADPKcMIPuTyeQ+EhJuvApzMQXjMMjzOxDBZYruchyCB3EAPoFv4jzMxCIEQRAEQfA4ZuBXOB4fwxgMR7MXdhiCRdhWAwq9wr0hYRfLhS1CR3gsrK7oqdJMdiKTOORcBEHQht/iCIzwbOcgOFzRHd6ODizFLp7bYIzGWLRgMqZhDoIgCIIgaMMcTMNktGAsRmMg3oclCA7WwMKXQ8JPPClcFRIOU7xqDMd4TMUTCIJgDk7AGKyBRxEMV3S1zTAfwZFevsHYDu/HF/Ej/B73ogNBEARBEATBrzW4sGFoD0+E11guHBgSblS8Kg3GAfgZ5iEIgscRzFN0tf64AcG5qOgafTACYzAekzAFrWhHcDdW1wOE80NCi+VC3/BgSNhe8arWjJ0xCbciCH6u6Go/RjALa6iNfthSDxL2CQlzQpPlwvEh4duK4ml2xT6KrvYpBI9jC8UqE5rCHSFhb8uFjcPbQ7OiKLrVG/EEgvcpVrnwhXB/+KCiKGpknXVeg78h+LaiS4QBoY/lwn5hRlgcFodLwuaKouhCSdOoa6+9ePCYMb/HdPRRdKmwc3gsvCs0h/7hy+H+sJaiKLrG6NbWr49ubc3o1tZ/bH7WWcMUXS78InzTM4TW8Gk9WJOiqJFR11+/P1rQ3tHU9P5bDzroH4rusAX+4NmuxuZ6sCZFUQOjrr9+00pyFiqV5OgbR426UtFdBmKRZ1uA1fVgTYqim73pD3/oX0mmYE2c17rddt9VdKc7MdyzjcQcPViTouhmbX36nIxtcVuv9vaDVSpRdKeL8fHQz5PCCLwdF+nBKoqiG426/vr/qCQnYUFTR8eOf9phh5sV3Sr0xQVYD+djAA7EyRW+pAerKIpuMrq19Y24An1TqRx0w+jRZytqIlSwB7ZBG35X4SY9XEVRdIMdrr12rWXNza3YJJXKd24YPfooRdHNmhRFN+hoatoKa2F6JWlRFDVQURSr2Kjrr/9eJdnT01SScalUHutoanrsxlGj7lMUNdBLUaxilWQD/KRXe/v/etIja6310O2bbfaEoqihXoqiazx67Y473qso6kgvRdE1dhjd2nqw5SrJ/Nbttz9fUdRYk6LoGptgR+yYSmVrRVEHeimKrjHl+u22O1FR1JEmRVEUrxJNiqIoXiV6KYpV7wzcoyjqzP8DqoJUcjI4sFUAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MTQ6MDMrMDA6MDAau315AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjE0OjAzKzAwOjAwa+bFxQAAArh6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VVtuGzEM/PcpdAEL4ksiP+M4LYoiNtCmvUP/e390KCNZBRC6myUkeURRnCFzKvn8uH7/87d8PHw9nUpp//mLiPJbWmun15KDcnn5+u1Wnt+eLu8rz/dft7efhaOIYA/ez9int/vr+wqVL+XcqrOEajlLZZJgK622+Rx7uTznanRtAHJtHGqxAQqAcKk9CLFihB3ktEFquWFVjciwWk2VXTc4g0eqIYNauhHEOniD68BxtcYjQ6TaNLz1DXBMh4ZbW8+7sChvPTqAUsO9J5Aqm3byDTDKvWg1U0ZO4LGreOyOJvADZLRoGSQAo5HJDklA9orLRh7eKg+NvqOGGKePKvDTMn9wbm2XcBIAe43eLMOk2ruybg/XGaaogDzkSihoKwsykMjVbShIRFKhJNlliB7scJBrxyBImLYeH+xQGwLVSHUBSztZkE+PSErHbRBsBPWxAwZixG3DLJWW4hSTvhMvJz3JX2cfeaj7oLFzyknPWSvlffPCnXl42yE5j7fKTNSlZNbJY+sz+Tn3BIQxkKzQ206YnPycRx0qgzOd7Bhsb2SPOAXVBSqz2LvQ2MmD+wM6hqO2Z2GEY7yDjrxTR7tQw52QXM/GsKOJkyZcf4xwUJbZR5nzrjhwgZn9CPw+0qsh0q3Xl9v1UyN7tLbL/XY9Wlu+fPQvxSdHl9L8jlaUrx0dB5PSj8ai+MbRPnLqR5NgfHG0AsWU1oqnaWipbE5DvFQwzRVZSlXnLl1KUtOQLbVH0/SlyGiasVQTTeNL2aCsUBRLeVAaXquA0jAtaudpeFF1TqHZRb2UhnVRKc1dtqgxp5DaIjpKw2PRFqVhXyT02BWLUhQ8fEQzKUQqPg6SSb8vuZEZsC/ByAw4llSkqlYN5fz9XyvGp3/amWzjM/dn2QAAAB10RVh0cmRraXRQS0wgcmRraXQgMjAyMy4wOS4zAO++rd4Af2KaAAABYnpUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS4zAAAokSWRS24EMQhEr5Jlt9TjmD9oNCtLWU4O0fucIIdP4ayMHlDgYn1/vl+LPtf7uPk+vs77lvt4fZ/3sfpB8HMsXUvPW374XIt4vRd//B6PGKEScvHg7Pf58OFOZRcNVnUCscFM5CCdAdBBUlLXHM4cCcJIcQZIZlAEEI0yI7sec6iYeDci9KKqhq6TEvJzzEKsekFlcqnvwmSpZjIYw/h60jAw7yoWZYzgYRMvJk2tlpJRme5N2NTRpMNMeTe5YmOAmnv8jEmGzNMHBpU340Bg1zOGkAk+g1qb1DXl07awu7K2jqgoLBEqkt4lLbRds168ARelwVjkee9PMyQvGSkCLVRgGraFVBVFV5QEYaxAIbitUSNYOIepcuo2ukr/P20UpPsagmzvny5gG0UkbtheVUbtszLp/xey7d53jajcna0OM87fP/7Id9r4u/0TAAAAAElFTkSuQmCC) |
関連化合物
ヒル方式による化学式 C19H20FN5O4
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |