モル質量 of C62H111N11O12 (NIM811) is 1202.6112 g/mol
C62H111N11O12 の重量とモルの間で変換します
の元素組成 C62H111N11O12
元素 | 記号 | 原子量 | 原子 | 重量パーセント |
---|
炭素 | C | 12.0107 | 62 | 61.9205 | 水素 | H | 1.00794 | 111 | 9.3032 | 窒素 | N | 14.0067 | 11 | 12.8116 | 酸素 | O | 15.9994 | 12 | 15.9647 |
モル質量を段階的に計算する |
---|
まず、C62H111N11O12 内の各原子の数を計算します。
C: 62, H: 111, N: 11, O: 12
次に、周期表の各元素の原子量を調べます。
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
次に、原子数と原子量の積の合計を計算します。
モル質量 (C62H111N11O12) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
62 * 12.0107 + 111 * 1.00794 + 11 * 14.0067 + 12 * 15.9994 =
1202.6112 g/mol
|
化学構造 |
---|
![C62H111N11O12 - 化学構造](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEACAYAAAAuvcrQAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETkTABYWyAAAAAZiS0dEAP8A/wD/oL2nkwAAMX5JREFUGBntwQu8H3LhP/7nOWdnF9vYzWXuhrkOM3dDY5Tcy31I0tytXFq5ZHJbkVqIYUIuWWUiNs2QKEp9uxGhfPnmkkvkttl2Xn+PHf8+nZ/btvM5Z+fyfj4VrWY5FYujl/fqgjXRV1EURTs2VcUh2FtT/fEzjMUVWFdRFEU7NVXFIdhbU2PxKUVRFB3ALzARE3E39tbURVhXURRFBzBVxSHYW1MnYk9FURQdwFQVh2BvbIZDMRL98DN8GWdhsKIoinZqGRW90RNdsA1Ga1SHwVgGK+JkRVEUHcja+LKmuuJ/EYxSFEXRAXwMR2B373Uwgn9heUVRFB3cjQh+hhpFURQd2EC8iOBziqIoOrj9ELyKlRRFUXRwkxHMQI2iKIoObACeQ3Ckjqs3rsX3cANWxI9UnIwNFUXR4e2K4A2srrp6oFajehV1qNV6voK9NOqGGkxVcQY2VhRFp3ANgvtQp/m6YzIuwo+wIaaqOAy7ex9hs7BnWF71XIflNPUXTMRE/BYbK4qiU+iDpxF80cLpj9UxGIditEY1qMFUFYdhd/+PcFb4ctg+/DhsrDouwDBNTVVxBjZWFEWnsT0aMBOfxKbYEaNwLMbhO7gGt+F+/BUvogFB8ADOxSaa+iUmYiLuwe7+S6gLM7wrrBKuVB3rYyq2xX5YClNVnIGNMQSHYjlFUXR412E2giAIgiAIgiAIgpfwGH6M47CXpqaqOAy7+y+hT/ixd4Ue4aeqZ0WMwg7oguEq1kFfLIe1MVpRFB3etxC8jPtxG67BdzAOx+IAfBKbYnX0R42mlsSdOACjsTamqjgMu2M9HIGNvCPcHbp4RxgRzlAdS+KH+CGmoocPdiR2VxRFh9YP/0awkebrhRHYFLUYomIg+qMv1sEXvSNsG34ULg7XhL6qY3k8j+B/0dX72wXHYh+LUNg6XBi+FVZXFEXVfQ3BrVrXx3GEd4XuYdUwIlwfRmu+WjyB4FFtWFg7/Dh0D0uFu0IvRVFUzeJ4GcFw1OFQFfthcU3V4nO4EAdZOCNwBA7wjjAkzAp/CqNCwhTV8T8Ifq8NC8eHHb0rnBxGKIqiak5BcIdG3XCTiklYVlNfxgnojl2xmGYK3cLMMDesHxKeVx13I/iVNiycED7hXeGksK2iKKqiJ/6J4GMadcMD+DQ+jRlYVlN3ok6VhftDwnbh+ZCwkub7CYI7tWFh/XBtqAu9w/SwuKIoquJEBL9U0Q33YQfsgGlYVlN3o0aVhW+HhJPCLSFhH833PQS3aqPCtmHJsGu4NFwSNlAURVV0xz8QfFxFN9ykYhKWRRcsrdF47KlRT1US9gsJPwmnhITzNd/JCH6kDQrdw8vh7bB62CN0VRRF1RyD4LeoUdEFp6oYg37YDYfhk1gMZ+EyfAddVEFYJSQ8H7YPCb/UfDthLq7WLDmfdDVPNiMHqIKwT0j4Tdg/JExTFEVV1ONJBLuZP4vhEqyloj/Ox09USXguJKzXwGv/5Ner0U3zrIlX8C3Nkimku3myPTlOFYTbQsLR4Wch4XBFUVTFaAR/Rq35MwTr4PMqeuEVBOurgju56Bzu2ZRP1/JHBJtonh54HidqlkwhF5HvkCnkOM0Ulg6zw6wwJMwJb4W+iqJotjo8hmBv828t7I2umvoWgstVx8kIvo1JCI7RfP/AfpolU8jipBv5JDlOM4UTQ8KPwkkh4QbVsxN+jEk4EZ/F9iquUxQd2GcQ/AW1mm9VzMWb6K/5tkPwK4xGcI3mewpba5ZMId3Nk+3JcZop/DEk7BL+EhI+qTq64V7Ua9QLR2FnjWpwm6LooOrwCIIDVc9PEYzVfL0xBzOxMYLHNd8DWFuzZA9SZ56sTDbSDF9j6FyeC8+HrULCc6GL6lgNkzR1FG7DJbgEtymKDmpfBE+gi+r5OD0f5ZxbSBfN9ycEm+M1BEuZfwOwIXbHGEzCvzAdF+JrGIMDsRM2Z/nVyQBS6wPlCnK2ebIHOUTzXFDHnD346n2cEWaGc1VPf/xEU0dhZ41qcJui6IBq8AcEh6quGvIICfmU5rsMwRjchWAnFX0xDHthLCZgMh7EqwiCIAiCIAiCIAi9HiYhIS+Tx8gDZCq5lnyFXEGuJ+uQPcghFl5XvIBgE7zcj3+dwVqq6/s4FJvg4zgKO2tUg9tQg32xo6LoIBbDt/EIuqq6HE1C7tJ8hyJ4AE8ieApPYQ6CIAiCIAhexu9xM76DL+FiHIyj8VV8G1fjp/gVK91KXiBzSUhISEjIPeQKsga5mXyKHEKOIzuRXhbMpxH8D/ZB8GvVszW6oQ674hCsicFYTsW26ImlcZ6i6GDqtIj0Iq+QkPUtnB7YBTcjCIIgCIKX8SAmYwLGYi8MQx/Nln5kNbIJ2ZGMIjuRK0hfciT5ITmKzCYhc8iDZDwZSbr6cDcj+AJuQ3CU6rkGf8UO5s+GOB+1iqIDGqrq8m0Scpn51x8H42a8hSAIfoupOA7bYBXUW2RyBelL6shvyLHkdHIfmU1CQkJe4fVrcBQGa2opvI3ZWBezMQsDVNeO+JKP1gdH4gJ0URQdyOKYhCfQT1VldTKX3E5qfKAsSQ4itzDjTgTBXDyIcRiszcnapN48WYEs6z/Sk4wk48mDpIG//hJB8CwmYzROR3ATvoTgR6pjMQyw4Looig5of1yCXlpE9iRbmidLkq3Nk9XIl8ivSAMJCW8/hdtxGJbRYWQFjt0X1+F5BEEQBPfhCQS7qI5P4nnsqyiK9+iqqnIy+T1ZnAwh55I/kJCQkDfIjeRA0kfnMAijMRmvImhA8BbWVT3rYYSiKP6jDl/BA6hRNTmZHEW+RYaQs8jvyL/IZHIQ6a1z64ZP4S+YjWAOrsO6Fl43RVG8r964EiuomixFTiYbk0vIgeQssgrpqng/K2EC3kLQgFuwsQVTg99hP0VRtKRsQu4mfyGnko1Jf/I/5CzF/Fga4/EGgmA6Njf/BmI5RVF8qE/jyxZYBpMfkwYS8k9yClnbPDmAHKVYEEtiHF5BENyLXRRFURWfw6bmWwaQ8WQWCXmDjCdLKKqlP8bhZQTBvdgFNZraBzsriqKqerL/GPIaCZlNLiXLKlpKb4zBcwiC/8FeqNFoMdQrivYuLB4uCBPDFWGQlrMO1vJetTgIz2AWDz9JppP1FK2lF07EcwiCJ/BVRdFRhHPDx7wjLBtu0XIGYntN7Y6/IAjuZ/MtFItKN4zG0whewdXoqSjau3CH/xKmhxotbxPcjSB4EgehRtEW9MRkvIHgIayjKNqzcFvo7l3hTi1rCfwOcxH8E0ejXtEWrYk/IHgLYxRFexX2C+eF5cJnw3neEVYNF4d61bMsfo3g3zgDiyvauu6YgCC4Gr0URXsURoSvhn1CTagJfwgJU0K95tsA/4vg79hN0d4chNcRlppK1lEU7VlYNXwvbBJeDAm3hm4W3t54A8EvsJSivVqLLg/w0N/IW2SMoljEzsH3cT22xg0qPoFDvI9QEx4MCdPCJuHFkHBr6GbB1GAsGhBciq6Kdi7dyQQSEvJ90ktRLALb4jyNatADU1XsiiN9gLBGeCYk3B42DS+GhFtDN/OnF25EMAdjFR1MDiCvkZBHyHqKopV9EbtraiomYiKm4UgfIqwRngkJt4fNwkvh9T24GPU+3PJ4EMFLGKnooLIG+QMJeYuMUXQo/VR0w2Le3zLopXXV4zMYrampKnbFkT5CWCM8ExJuD5t9mnsQTEG997clnkPwV6yp6ODSnUwgIT8lD5LB5sm5pA+53H/kSDJU0S5MVbErjtBUd9yMc3AVttDyumAcfokBuAc7YnsMwVQVu+JILIXRGOoDhLXDc+H1PZiETfAiglvRTVOHYhaCaeij6ESyN+lH7iE/IjXkStKPTPUfOZVsoWgXpqrYFUdo6mAcqfUsj3sRzMY26I99sQ/64GMqlsPqWAG9cIYPEdb+NHchmIpN8CKCn6Ib6jAeQTARXRSdVKaQY8gB5ErSj/yJXEIuIb8mW6iS0CdsGvorqm4qJmIipuEITZ2Oj2lqIGpV30g8h+BpDLdgdsfRPtoaeAbB7dgELyKYhlsRzMRnFZ1cppA6chv5MelHpvqPnEq2UAVhRJgcPhuuDzsrqmqqil1xhKYOxaGaegCPYyz6ab4uGIe5CKZjaQtmE4zGiebPGngGwe3YDP9GELyAbRSFTDFPNiOzSD8y1X/kVLKFKgi3hV7eEbqF6YqqmqpiVxyBdXEodkBP/AxfxInYHn9DEPwbF2INC2d5/ALBbIxDrYVTY8GsgWcQ3I+3EfwOKyiKebKD/8gepBv5OuljnmxMlrGQQtfQ3TvCDP8lzFBU1coqeqMfumMDHK9RF2yANTSqxUjcggYEwb3YC3Xmz0g8h+BpDNf61sELCObicfRRFB8oo0kDuYf00AxhxfDLcKl3hCmhv3eEXuE2RavYAF/x0QZjAl5HEDyOsejn/XXBPZiL4DfY13sdgu/hYiyvZdTjAQQPYjFF8aGyHHmShNxCulgI4VPhXyHhb6Fv2DD8JJwcpoQtFS1uExyOg8y/xTEGf0MQvIaJWEfFCrgXwWyMw544VFMjcClqsBSW1TIuQfAMllMU8yWrk+dJyNWkxnwK9WF8aAgJN4X1wvSwZugSVghdFG1eHXbDHWhA0IBpGIcXEbyFS/AVXINDNTUO22hZxyB4C5soigWSjclrJOQs8yGsFH4VEt4OY8Oe4ZWQMEXRbg3GBLyO4CUEN2MGVsJKOAyHaupkbK+pelXTZSRmowH7KIqFkh3J2yTcc6gPt+c/uDckPB42DxNCQ0iYEvoq2r2+mITgT6jBNBWfxqHoio9hcayPm7EElkR/TMNE9NYsWYVZD7HVw/iaomiWHMiv76LubXzGe3XDhchyPPc6V4V1w69CwswwJtQoOowhCB7SaLSK9bApNsCqOFujrfBtjMeOmIngCWxtoaQP+QsJs36AWkXRfEcjeBufULES7kcwE2O2Yvfwckh4PGyo6HAWR/CaD3cwRnt/6+A3CBowET3Nt9SSn5KQ35NeiqJ6zkXwBjbHHvgXgicxHBOQKdwVpoS+ig7rFQT9vL+NsDHO9MHqMQ5vI2x8I9nMfMn5JOQFMkhRVFcNrkDwJoJgMjbA7xC8Vc8Rig7vDwiGen/1GIYePtqG9Lybl/5F5pBzSDcfKJ8hIW+TbRRFy6jHrQga8HXsgX8heBKbKjqFWxDspipST8aROSTkz2Qj75ElyMsk5LOKomX1wP14A68hCG5EH0WncSGCY1VVNiePkpC3yYlkc/+RDchQcpKiaB1DMQvB2xij6HS+hOA8VZceZDyZSz5PXidbmSe3KIrWNxrBi1hC0ensi2CyFpN1ydLkSnIr6UpuURStrxa/RPBNRaezOYIHtKgsTS4me5Cx5BZFsWgMwWzMxgaKTmU5BM9qUVmaXGye3EDuVxSLzgQE96JG0WnUYhYa0EOLydLkYvNkVfK/imLRWRz/QHCIolN5AsHqWkR6kR+SjRVF27E/ghcxQPUNQw9Fm3MXgu20iIwjIfcpirblDgQTNU8vbKViIF7CE9hK6xqA63EFrscA/EjFuVhJJ3YlgkNUXZYi/yYhwxVF27I6ZmIuNrfwVsQL6KvRWvgzgjk4B920jm9gO416aDRNxUUYpBP7GoJxqi6XkJAbFUXbdBaCP6KL+bcKtlAxCaepqMc4zEHwZwzT8qahu6aexkRMxJ8xSCd2KILvqaqsQWaTOWRtRdE29cDfEBxr/m2Ph1Gr0YpYx3tthkcQzMZ4dFVdq+IyHIJrsZKmpqm4CIN0YtsjmKGqchMJuVhRtG07IngVy/pgI7COim+iv4/WA+MxF8EfsIHmWwtXYzaCx/Ax3IitcCB6YZqKizAIw/A5DNDJLInR2FrFYRhgoY3bjFmzyGtkGUXR9t2M4Fof7FicY+FticcQvI1xqLPghuBqzEHwNq7GGhqthoMwEnXYWsWG6InlsSX21MmthBfQ08KpwS/p+iSXHqco2ocV8TqC7VQcgf4a1Wm+xTABDQjux5rmzwaYjAYEs3A1VrPguuIEjNDJjcd5Ko7GTubfngieR29F0X6cjOAV9NZoGGpV3/Z4CsGbGIta729L3IIGBK9jApaz8PbEifikTq4PBmhUj//DEI1qUOOD1eOvCA5XFO1LN7yB13GclrcEJiII7sPqKobjFgTBa5iAgYoW0QU7qNgZ1/pgRyN4BPWKov05FsEMrWdH/B+CNzARv0IQvIzT0FfRqjbEx1Qsr6IXnkOwu6JonxbHG2jAKlpPH0xE8CKCFzAOfRSLXA2+ie4anYngV6hRFO3XtQhO1fpuRvATLKZok5bGG3gDWyiK9m0HBI+hRuu6AsEhijbrcwj+qSjav1o8hWBLresmBLsr2qzrERynKDqGsxFcqnXdg2ArRZvUDa8iGKQoOoY16PNHxk0ni2k9DyFYR9Em7Yzgt4qiQ8n9JGR/redZBMso2qRJCE5RFB1KjiAht2s9sxB0VbQ5dfgngrUVRYeSJcibZC5ZQXX0xGE4EStiY6yoUV8ErynapG0RPKooOqTcQEK+rPlqMBU7Yh0ciBOwnUZrInhS0SZdgOAsRdEh5ZMk5FHN0xUr4ypNnYCjsRk+j+B3ijanBk8h2EhRdEjpQp4hIZtaMIMwGpPxKobjIk2dgG/gs/g2gjsUbc6mCJ5GjaLosPJ1chfZwofKypy4H36AFxAEwVzshl+gh0Y1OAHbaXQgghvQRbHwwoCwvOoZj+DbiqJDyypkAqkxT75snvQiI8l48iAJ0/+EIHgGkzEay2q0DX6AiTgMB2ETjY5FMAlH4NuKBRe+Fc4Pp4cbQpfQJ3Sz8B5BsI2i6NCyAfkLOcg8uYVcRuaQkJCQl5k9mdrDsZoFdzKCM7ERJigWTFgvXORdYUzYK5wTZoeHwsRwUFgn1PhoQxC8gC6KokPLBmQcuYX0I7eQr5HZ5EEynowk9ZrnmwhOQm+ciVrF/Au7hWO9K2wfvhwmhbkhISEh4flw8458Aduit/c6DcGliqLDywbkNDKMXEhuIX3IYqprBXwKa+EQHKxiNdQoPlxYP1zgXeHosF8YFdYPw8OYMDk8FxIa+vIKguAJXI0xGIbfI9hRUXR42YCcZp58m/xK9Y3Azfg8LsMgTFJxE7opPlq4JJwejg8/DhuGhIRXw/QwLuwSNnyWvfFt3I9ZCIIgCF5BV0XR4WUFsrN50oecrPpuQz8Vy2KSipvQTTF/wqCwZqgN64ebwrMhISEhYe79/AiT8HkMxRCMxtV4BcGNiqJTySHkQfI51fdzTS2LRzARE/F3dFM0T1g27BLGh3vDm+fwcwRB8G/cibPxKGbi24qiU8kXSMhFqu9GLK9iWUxScRO6KaordF2XjXAsrsUTCIIgCNZVFJ1Ktichd6u+9fEznIbvYgVMUnETumE/nIAVFS1mKeyCMzEHweKKolPJsiTkBS2jFsuhG2rQU0VvjXrhJKypaHEDELysKDqlvERClrJodMFu+ISixQ1D8D+KolPKvSRkhEXjQIzF8ooW9ykEP1EUnVImkpCjFR3eFxB8R1F0Sm8cxWt/4c6vKTq88xGcoCg6p+0Q3KPo6PIj5j7Hw3sois5pGQQvKzq6PEhCNlEUndeLCJZRdGR5gYQsoyg6r3sQbGcBha5hmbBY6BKOCheHI0IXRVuRxUjITFKjKDqvSxCcgnWwFXbDZ3E8zrqa08MN4Y7wu/BkeC0kJOwZzg37hNpwYDhH0VZkTRLyV0XRuR2DIAiCIAhyDXeFhISEhIS3w3Nh33CH/xJmKNqKfJyETFcUndu2CN7GQ/gFfoLv4Zs4eSwHhb3DyDAsDA1Dw2bhk2HtcIf/Eu5QtBUZTUIuVxSd2+aYi5k4EGNwOi7AtZh6ONeFx8LLISEhISHh3HBJGO4dYUS4QPGB+qroju7e30B012zZldxKDlcUndtaCIIgCIIge/HbkJDQEF4Mfw33h9vCYaF3OCdMDGeFnooPNE3FARilqd64DWfheqxvoeVyspR5ciTprSg6rzURvI7vYwJOwzHYH5/YhI3CaqGfoiqmqTgAozR1DA7Q1CiMxgHYC3vh46wzgmxHhpFhZAgZRAaRJchvyGXmyffIAEXRea2H4A9a17rYF4PQExuoGK6DuxsTMRF3YpSmvoWhmnoOQRAEoc+fSEhISEhIyFhyIzmbjCDfIwMURee1EYLfaD0H4HJ8HGdhLVygYpoObpqKAzBKU8dhL02dj4m4BpMxGdNY6WoygzxIHiR/JE+QJ8ih5EbSk0wl15ABiqLz2gLBfVrPXeimYjVchiWxJGbo4KapOACjMBSfwzbojztwFMZiLQstN5onu5N/kwGKovP6GIK7tJ6fa2o1/AZn4kw8roNbRUUf9EEPDMUYjbpiQwzWLDnCf+Q00ktRdF47ILhd6/kRVlGxGi5QMU0ntQlOUHU5hfya7KgoOredEdyi9QzGTbgUl2BVnKdiikYH4hSsoh2ox+YqNke991ofB2ANTQ3HEdhX1WUiCTlMUXRun0bwYy1vHE5AjfnTDxdgoHagD65XcR36amoUJmEEzkB3rSLnkJCvKIrObT8E12tZH8dczMb65k93jMQO2oE+mIKBGIgb0VdTM9Bdq8uJJOQbiqJz+wyCK7WcpfEsgpPMv/1wLJbQDvTBn3AaTsMf0VdTP7dI5HMkZJKi6Nw+j+BSLaMWdyCYgTodVB9cr+I69NXU9Ris1WUPEjJFUXRuRyG4UMs4E8GzWEYHtgQuV3EZlsA+GIsNMAg34lJchlp01eKyNQn5uaLo3L6I4HzVty3mYC621Un1wgSs5r12wFMYokW9ti7P/JM/3qEoOrexCMarrqXxLIKTdWKLYT2M8l5XI3gC/bWcZRE8oyg6t1MRfE311OIOBDNQpxPbA2OwpPfqjvsR3IOuWkY3BDMVRed2BoJTVc8ZCJ7DMooPNRBPI5ik5byBoKei6LzuR3Cz6hiBOZiL7RTzZUO8geBILeMpBCsois5rGmbjeI22wvEqzsEuKq7DkhotjXNVLI1nEZyiWCB7ogGzsZ3q+z2C9RVF5/UPBKt5f4diiEa1eAvdNNoK96p4DMHPUKtYYGcjeAmrqa47EWyrKDqnlRC8iBofrR57qxiFa1W8jgbspFgotbgJwV+whOr5EYI9FUXntA+Cn1o4vTBQxRUIJioWWi/8EcE01Fl4K6OXRj/FG7hOUXRO5yM4VXWshrl4E/0VC21lPI/g65raD7UaDcJpKo7EV1UcgRU0Oh/BHYqic7oPwfaq5zYEJyqaZThmIThXxZMYpNGyeE7FhtjR+1sOwauoVxSdSz3eRAP6qJ4dETyJOkWzfBENeEHFrdhFxRjUmj+PINhcUXQqfxzGKfewxY9UVw0eQbC7olkORvCkihEYbOFcgOBURdGp5BgSMkn1HYtghqJZ7kTwOdWxG4KfK4pOJdeQkNGqrzdeRbCeYqGshLl4E31UR2+8jbexuKLoNPI4CVlPy7gAwSWKhfJVBNeorl8i2ElRdAoZQBrI66SLlrE65uIN9FMssEcRbK+6TkfwLUXRKWRnEnKnljUNwQmKBbIVgv9DneraCsGfFEWnkDNIyNla1k4InkSdYr5djuAs1dcFr6IBAxVFh5cLydtkdy2rBo8i2E0xX3rgXwjW1DJ+iuBARdFhZSuysXmyCtmGbEoGmifdySdU1xgEFyjmyygEv9RyxiC4SlF0WDmDPEB6kE3JqeRUsoV50p9cq7qWwGZYGp/AqhoNVbEGFlPM8zMEh2k56yD4B2oURYeUM8jR5EyyKTmVnEoOJhuSEeRa1TcMt2EvnI+lMVXFBAxWWA5z8Bb6allPI1hbUXRIOYOsQ64mB5FTyank6+Qwchy5VvVdgTU1NQ1d0RUXYLDCSQh+oOVdhWCMouiQcgZZhyxL/kROJaeSLcyT/uRa1fdT9NbUE/gOvoPfY7DCXxDsqGX1wMUIblEUHVKOI6ubJ0eRo8nhZAPzZAnyDdV3LrbR1FQVEzBYJ9cXM/B/6KJlDMMEvIggmInFFEWHkj7kHnKQ1rcMfoLv4Er0xVQVEzAYu+JYbKYDOUDFYGzsvdbDaTgG/VXXyjgVjyEIgl/hTbyJzyuKDiXHk5DbLTo9VdSoqNGoC07B5jqQaSp2wZGaWh3TsQq2wTDNFHqEvcIt53EXguAfmICNsRf+iuABRdFhpJY8QUJ21nbVYXUcrQOZhm2xLU7GkZo6HrtoplAbPhauDK+FhLzC/+Aa7IAR+B5eQxA0INheUXQI2ZWEPE5qtV274gsYrAOZhn2wD76OIzV1CkZaSKEmnBb+HhISGsI94XNh/S34Ev6OIGjAL3AoTkNwn6LoEDKdhHxB0eqmqdgFR2rUQ6MR+K6KOh8hjAjnhhND73BXSHg6jA9Dw0FhemiYyt0InsZ4rK6iJ15AsLWiaNeyFmkgr5ElFK3uWyq2xKewEfbHSRodgysxCev7EGHbcHlYPGwWfhqGh23DDuGa8EZISHjtZS7ECNR6f6chuF1RtGv5Lgm5SNGmHIyjLKDw3bCGd4Vrw7LhLyEhYW64M3wm9PLR+uJVhP4bK4r2qQ9rP8yMu8laijZjJdThHAsoXB5W9q5wRVgxXBn+N4wPq1pgI77C335Fw82Kon06DsHtijZlaXwegy2gcEA4wTtC3zAj1IbeocZCS3/yGmkgwxRF+1KLxxHsrOgYQm34Urg0XBbWUjX5JgmZrCjal10R/B11iuKjZRnyJplL1lUU7cd0BF9UFPMvF5KQ7yuK9mEtNGA2NlQU8y8rkFlkDlldUbR9UxAEszABAxTF/MnlJOQ4RdG2DUcDZuFGzEHwGsajt2KROxe/wXlYSZuTlchnyTLmyQpkJUXRtnTDHxHMwXhshtsQBE/34eBQp2h1NTgHQRAED2Ec1tZm5PvkevNkb3Kgomhbvo7gdQTB0/gshuM+5GruCg+HvRStpg6XIpiNn+MGvIYgCB7GmdjQIpXvk3Fkd7I3OVBRtB2bYw7mYji2w28RBA9j7zr2n80fQ0LCnWEjRYvqhh8ieB07YRWNumMkJuA5BEHwv5iAkeiiVeX7pC+ZRg4mByqKtmExPIrgbBW1GIW/I8gNXBo2DaPD8yGhIUwOqyqqrg/uQfAStsF1eAFraqoOwzEB/4cgCF7E1dgFXbWIdCOnkhPJ90kvMoL8kRyoKNqGCQgeQnfvVY/Ra/L7MDM0hMlhaPh6eCskzAr7aOe2xwoa9cTe3msFnI4zsKKWMxC/R/APbIrbEbyCrXywWmyOb+BxBEHwL3wfx6Cfqsj25FES8gaZTHqZJ9eSAxXFojccczEbG/kQr9A3fCO8FRJmhvPDkDAxvBZWCOuFUWGIdmgcNtVoKVylqR64F+tgReyoZayKxxE8hCH4JYLnMNSCWQdjcS+CIPgrulhoGUiuJiEhj5LtFUXb0xOPI/iq+RRWDFeHuSHhX2FsWD4cFL4Ttg4XhoO0M+PwReyE/XGVprbGmVrWRvgngvsxFI8g+BtW1zyr4VTMRbCVBdeF+jE8+yQJeZ2MJfWKom2aiOB3qLeAwtphckh4ISwR7gh13hG6hBnamXE4AbviQFylqZE4VVNfxYMYh8GaZzv8G8EtGIanEfwRy6qe6xEcasFshF8jbPgLMoWsaL6llvRWFK1nJBowE0M0Q9g+7O0dYYb/EmZoZ8ZhU42WwlUaLYE69Mdd6KFRN/waQRD8FqdgbQtmf7yN4CoMx4sI7sTiqusLCC4zf/piAuYieAI7WSBZmkwnZymK1rEEnkLwJVUUfhiW9Y6wfJisnfkM1tSoD8ZiSRyI72g0AlfjUuyOHtgFV+MVBEHwN0zAcNT4YMdgLoIJ2BVvIpiC7qrrCGyG4DFs5L1G4kKcgs3wIoKZ+Bp6WCCpIb8jZ5A6RdE6rkLwS9SporB6mBwmhhvCqjqIzXGej9YNIzEBzyIIgqcwEbugXqMajEPQgBPxGcxGcBFqVd9UdMNMNOBQTW2OyeiJYVgTf8BdWMtCy+IqeiqKlrULgjcwWDFflkI/nGvB1GEELsDTCILgn7gCf0AwG4dgLBoQjNdy7sDeeAzBWZo6C8M1taTq2Qh/wyaKomX0x7MIjlXMt3rsj401zzoYh4cRBMEsfBLnIZiDw7Wsn2E73IjgBk2Nx2ZazibYTVG0nPsQ/AK1ikVqCK7BrfgMrkcwE3tpeVM12h/BbzVaBV3wcXwXNahHNy2nu6KoroEIGrC1ok0ZgL/iFWyjdZym0SAEL2ML7ICvavQ5XIaJWFXL6IkHUa8oqutVBM9juKJNWQXrWzSeQ7AKjsTBWlcPRVEd9VhHo764GcEsHKIo3nEzguPRF2drffviazhYUSy8jfANFXUYjyCYiC6KTu1kBBdjHyyldW2LmQjmYE9FsWCW9OH2x1sIbkcfRac1EsGvtL5P4S0EzyCYg9GKYv4MwLPY1ofbAs8h+CvW1DLWw+34E85XtDm9MQcz0U3rORpzEUxALcYiCMYrig+UehVbYycfbXk8iOBljFQdfTEa9yIIguDrqFW0KX9GsKmWV4NxCBrwJU0djNkILkCtomgiteRBspMF1xM/RjAHYy2crtgDN+FtBMFL+C6uxCwEU7GEos24HMGxWlYdJiKYjUO8v93wJoIfo7uiaCKbkufJdhZcDcaiAcGl6Gr+rIPxeB5BMAfTcRB6qNgSzyN4FGso2oTPI7hWy+mGHyJ4A5/04bbBKwhmYHFF0USGkaUtvL3wBoJ7sZT3NxBj8DsEQfAQxmJpH2wQ/oTgJWyrWOS2QTAXJ2EV1dUH9yB4GVuaP+vi/xD8BkspiuraAP+L4Amsq1E37ILJeBtB8DImYrj51wtTEMzGsYpFqiseRxAED2EchmmeZfA/CP6BIRbMyngUwRNYTdFJZE9ysHmyCtlbyxiI+xG8iT/hZQTBLNyIXVFv4dRgHBoQTES9otXVatQfx+E6vIogCB7FOdgENebfIDyG4GGsYOEsjd8ieBYbKDqBnEZ+TVYiQ8npWk433IAGBMFDGIulVM8+eBPBPVhS0Wr6YZL3qsNwTMCzCILgKUzELqj3wTbC8wgewADN0wu3I/gXtlJ0cDmN7E5+QIaS07WsWozFZAzXcobiKQSPY21Fq6n14WoxHOPxGIIgeAlXYxd0U7EtXkVwCxZTHV3xAwQzsaeig0odOY0MJSeRU8npOo5l8WsE/8auihbRBT/BKhZcDTbGOXgUQRC8iutxO95CcDXqVVcNzkcwBxcqOpB0J+PJdHIaGUq6kd+S07W8tbWexfADBKdjSZyDSzACW2BjFV9QLJTPYj3NNwhjcC8aEATBN1CjZRyPIHgLP8UKinYum5CHSchschxZwTzZkuxKNiF9tJzxWlcN9kYNpmM9dMWOOBj7qJimmG9nY5CWswom4Lc4X8vZBLPQgFsxG8GrOBZ1inYm9WQseZuEPEQ28h7Zlcwk00idjqUvpmjqYFyIA3Egpivm22F4BF21X33xNwTn4gQEMxEEv8cWinYiQ8jvSMhcMoF0876yInmOhJyvY+mPGzV1ME7FltgSP1N8qL2xmoq1tY6lVF8NpiB4AFtiFhqwG3bB3xFW/j/mXEz6Kdqqerp8lZmPkZBHyeY+UrYgM0nIaNX1Texh0bkTgzTqg4Oxj4ppGi2DPor3OBCPY6DWNUn1HY/gZayPvyP4horFcBaP30tCXiCHkBpFW7IuHkT4xB/It8li5ls+S8Lzz7DSFqpnV2xm0VkRF+JSjMbHsIWKk9ENe+ES1OnAuuMHKi7GMppaBVNwOa7DYjgZJ2nHwqYzuLMrM7EbpiB4AF29R1Yn00hIyG/IRopFrRZjMBPB3zHCQrn/dOqfwvNYSeeyNi7XwfXAFBVXYKCmrsFaGnVTUaOdCn3DkyF/5/SlGYPgJazoQ2V/8gwJmU02VCwqg/BzBMHV6G3h1eIWBL9HT83THzXavp5YH2dicR1YD/wdEzERj2Cgpu7WNmyEb2mmUBNuDAkPhC0bePEYHsAu5kt6kgvInaSG9CVdybKki3nSh3RXtIR++CneRPACPq46euPPCG5ErYU3Ha9hK23fNthQB9cDU1RcgYGauh29LHrDcBS6aIZwXEh4OWwQ/h4SzrVAMo3UmSdnk6Hk5+QE82QsGa6opsGYgNfRgDcRPIYuqmd1vIy5GK55Fkc3RZvQA1NUXIGB2AKfQz/shmuxLQ5FnXYqbBxmhYawR5gSEh4IXS2QTPMfOZsMJVPINWQlMpYMVzRXHXbHDARBEHwTDyM4XHWNxM4aLYldsK5GG6lYDX0U7UItNlUxFN2wLD6BHTVaA/thM4tY6G8hhD7hbyHhm+H4kPByWNkCy1/JRDKR/I4MJVPIKuQHZCwZTj5BuisW1BIYg78jCP6NibgEwa+wF4Ln0Vv1rYHp+BTOwiBMVXEqtvBen8dh2Aq1ijatB47HVtqIUBceCq+EpS2g0D1MCA+ELcOs0BB2t1AyzX/kbDKUTDFPTiF3kP1IA3mFXE1GkhrFh1kDE/A6guBxjEVfjXrhOQS7414E41TfudhSU7ejJ3ria9jCex2ES3E36hRt2j74MrbRhoRBoVYzhF7hzyHhPAst0/xHziZDyRTzpCt5hBxOfkNCQkIeISeRFRT/v1qMxC1oQNCA6dgLdd7raASPYDga8BoGqq4rsYqm/oDzcT7uwxaaWhyn4mJsj/WwlYqjFUVLCJ8K14bLwvhQE9YIV4R6Cy3L+o/0J93I0v4j/Uh382Qd8g3yDAkJmcuXJ2IUFtN5bIEfYhJOwyF4EkHwKr6DwT5cPf6K4DDchKzLuarrS9hLU1NVnIotNHUjtkZX7IbdcLiKaYrio4RlwqfDuWFFHyH0D7eEGu8IXw57WGRSS0aSq8kb9HwUwau4GiNRo2O7D700WgInIngMY9HX/NsLwfP1bPRb7g4zwxqqZ3H8EN/F97AiblVxCjbHx3EEPokZmtoNl2Nf7IufK4qPEr4QfhJOCgN9hDA8jPOusGk4S5vw9z44HL9CEASP46tYWcewIvbGNzEYN2mqLz6BGguuZgAzfspdb3FSmBgSblR9XX2047EzpmtqN5yPERiBOxXF/Aj7hu+GcaFPWCwc6l3hc2Ex7wjrhu94V9gpnKDtWQNn42kEwWt4FTfiLOyL9dBVm5VenLolxmIKnkEQBHvhLlUUtgoJr4V1w79DwnCtqx4DcBJuw5oa9cZuOFzFNI36oq+ieD9hVPhaqAsbhJ+EvuF67wrXhb7eEWrCTWGXsFGYFpbTdtViB1yD1xAEQRDMxhO4BeNxEIahhxaT7ckvSRfz5DrzZBA5iEwg95JZ3PoHBEHwIm7FV7EGLsURGIIdVEH4SUi4KHwtJNwfarSe7XEM1sNAXIBLcRw2wcdVnIY67IcJ6K0o/l/hhtDfu8LNYbnwyzAqjAr3hb7eFbqHUeHwsLz2owfWxy4Yi6vxIGYiCIIgmI0ncAvG4yAMQzcfrDv68kpfsjwZRAaRDcgwMoyMJLuSW8jx5snN5OckJCQk5G3+fQ8uwAFY3XvVYjccg2GqIKwRZofZYVh4NiTsoW0bhKtQpyj+X+GHoa93hZvC8uGOsFXYKkwPfXVc3bA+9sNZmILHMAdBEATBXDyLl/EyXkMQBKHhJRISEhISEhKyPxlNfkhWIDeTi8gz5BYyjowkPSwi4dKQ8ONwVEh4NNRrm+qxHk7ACori/xUODV/0jrByuDX0Ddd7V7gu9NW+nYclLZiuWAd7YRzuRxC8jSAIgmAmXubtx8jT5AnyBPk9eZA8SO4g+5HRZDVyJbmZ1GtDwsDwekjYJvw1/DwM1HZtjeGK4v2E2jAmTAwTwsDQM3zRu8IXQk/tW3/NdwyCyzAFwdHobYHlk2S0eTKO3KYNCmeEhKvC0oqi6DROQzAOP0Gwm4WSgWQQqSWrkhHaoNA7HBK6hMPC98KV4fOKomiTdsIymm8CgjH4BYLhmiV/JCFDtGFhSJjkXeGqsLaiKNqUGlyDAzXf9xEcgIcRrK1ZMo2E7KQNC4eEUd4VDgyfURRFh3Ubgk/iOQTLaJZMJCFHaMPCp8NR3hWODbsriqLDuh/BppiFoKtmyckk5BxtWOgV7ggbh03D9LCYoijajKF4ACepgvP50Ve4dx/W354/rcPDmi0HkJDrtHFhqXBEOCIMUBRFm9IV2+AgVRBeCglDQ8KTmi1b8cYb/OEmRVEUbUGoDXPD3LBRSPitZuu+EoKnFUVRLKR1sRFqVUHoFxJeCtuHhOmarwtmYw7qFUVRLIT98We8hHU1U1g9JDwW9gkJN6iOpxCsoiiKohmWRVfNFDYNCQ+EI0LCd1XHLxBsoyiKYlELO4aE28IpIeFM1XENgoMURVHMp+XwGXwf31dF4YCQcE04PyQcpzrOwrM4VFEUxQfoiZEYjwfRgCB4Cz1USVgufCpsGT4Rvh6Gq4467IVjsApWx2AVOyuKotOpwzCMxXTMQhAEr2M6xmIYalRJ6B4uCpeG68MI1XMlDsFQHI39caCKqYqiaFe2xw4qzvNeG+AqTMJBGg3CaEzGvxAEwRw8iPEYia5aSBgT9vWO0DXcHbpovm6Yoan98RUMwRDcriiKdmUUDlAxTVN1uBf9NBqMiQiCIHgYE7ALemsl4fthWe8Kk8LKmq8fpmhqf1yFo3E0ZiiKol0ZhZtwJs7EXZpaGVdp6vP4JyZjNFa0iITvhCHeFW4KS6iOe9Fbxf44UMVURVG0K6NwOAZgAG7X1DKYrKl61GgDwtDw4zA0HBgmqZ5NcQMm4ivYBbupmISuOAbfQr2iKNq0UThAxTSNNsUGGk3FNlgca2tjwurhiLB7qNX61sAkRVG0eetjfRWfQVdsgvNQj8VxAs7FSMV/64I+OA79FUXRLq2Jy1Gn+DD1+AxGKYqiXeqBT+M8LKEoiqKDWw5LKYriff1/Ou3lzRFBpHQAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NTc6MTkrMDA6MDAO/z8dAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjU3OjE5KzAwOjAwf6KHoQAABvp6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAWIV9WEtyHDcM3esUfYHpIv7kIgv/4kqlIlUlTu6Qfe5feSBH7BkHzkiCNDCG/fB7AP1y5Ov3z7/+/c+xX/z55eU42v98jzGOv6S19vLbkX8cH798/eX1+PTtw8d3zae3P1+//XF0y++WX8+2H769/fauoePTcZOzGanFcRsnD6ZGRzvbfF2f5bSk0xtryHHr52jKPApLWZZM0ns/bnGqmYoXlgrLdrIbd07DaGpqhaEdb9CSxWg2UbbmIwpDP14POsO1u+eJ7vCnMgw8Wk6W5m5pKNYC6v8adhgq3B4B7c1xdrOhheEARjsFrljL+LQI7lV8qAGknd0QITpudg5uiFVlmenxc5A0Q4AUnxkh5ZmZHgTQlGhkRp3weK4sBTgH0DV1yjNFfFB5pgJnP0V1iB43RrT6iCqYZHh6R7CVFDjbGSEiVSLJpyViyS09DnaWqtyQtDdE6qSBQ9OPjshG6VCfMNWocxxA2cy4ShCczBgNjhF+ZIioRRV2btOQNGygSM+OBI3q0UwAmRHq8AIpRXkG4lsYMjD6mR0BHxz/zuxVJFlmuQ3p3ClT34CiSg7rLGDr2a8Aa4Z0lydm7+hJJIEaQts6G5cYs3cYXjdF8BEntU6l1zHb1lXRuTixmVBZ6Jy9g2royE0Qjuyoz7KAOJsHnEEubh3lKUh6VJQh2TxZi6ENliAXGiDFyvLObchhmCCWKDrT0nJym56h4d4zjyDD+sxsHnRsb70hf37mL65oQ7J5YBmNRw8kAJkSq8pSsnlALGBTAmGDlEBEZeDFl2WPwaA3QmAVvFVZZvfcVu+izzgDa1bVumT3gP+aRVA2IuxQnZXlWE8fhrZpM1tIUqtKSdsyNRcaPdOFJFCvMq/ZQnj+8J71iXwRKlBKU14hhUeo5jQdMlCjlemcQQb9UHQu/sKhTlX4VVeZ9DE6DICaFBkrAWQrZZ2M0fh9aqhXYVVfZeo0qM9Th7Rezg2NFSwQd1bfAiAlKepsKDS7dsFbuIXxxmUF6MwWONm65cyc5T9KzrG2TsXI7Oh8OAhyQstWprOncksAhJZhCx8SFQBbC0M70aduNuMW6JsqWrZWBhS0KLhkTiXQWqsIAD10b0GihIAZT0bl6DZbjoGdwCYTAY0fxMBXuFSauGRxY9ZZr/JlsWIg3SgLBguMoB0rurC+TkW05uLCKB3tJZ/bPV/J47P4ZFArofp7upDPbEvkTXpJ/U7LckR3NA+WEwPSqred7z5ZCNoUPabayh5wWdUagUVogAEZc7eMk+udLxSEojgTsVWuqspt8S9yj0E7Rw9Is8qo+2rWwCBBHOa62spK9VhnojgGlg7UoYEMe+n8zFKOlMGoA0RhdC/nvY9liXASehl7DDhDKuejrRmJngeXDaQVWa2oMjJHloUJl3EilhhqVY9EpggO45jIpQQlR2UuIzOU/tLIXAoGi7VRLWORGcquA/eCRvXEVKMy7mHrzCR8rBuEJQpkVjruE+ZoSdJHEr/IqPo4Yh1JyAu2LLQRBkvUT+/LNHCLwJaCBID9OpWnjuUS9uWYU4y1d6oKpLe5ieIeobhJJKEQiLJqzU5zHeyYdes+w+MHN5++coS9sdmkZwbxlNns9yRhQOqY9Mya16DKVOclAJtGX7ckNCZWrspyZim7xxAytDNZ99Lyy+vnp2vguhh+fHv9fF0M84uv2x/hXgf3fv76k1wXvVTqdZtj/Nh1Z0NJHX7dzLDPHnHdv7AQHv26ZWE3PcZ1lyK8pccrE+VtCL+fEBDd9RsoFidOQZdNwkzNBgrWpik2VkqwKTZcVBenoI2YEnJqNmhMKppi46YEDsGPdwmegh4uDTQ1V3AzuhC8MXNihuCNmTO6KTZmTsyp2Zg5YwzBGzMn5rwVbcyckU6xMXNihkYed2w65gb9sEtTCtmYJeMMIVc1zHKAZmOWjDOEbMySmCFkY5aMM4RszJKYU7MxS8YZQjZmScwQ+rhycgrdmDUxp2Zj1owzVkP9ro5V7vqrlGctKza+h92PpmYjV79/aiPXRA6hG7kmcojcxp6eOJbeHpcwSmEbP8Yap7CN3xI/hO1zTNYTsRQ9nW8Z+Rz5VzfailguOk+W6QWEbS8s7prthd3jbzv+NlYe/bt+9PTCc/N42EEohW8vnO+a61Oy6sR3/F1XveVm8HR+egHhF61MXnHM+4fJvzQbv/dVz77x+1h9EQv/Rhtt9V1O5cfnBq2+ju8qJ9IXiLg06QtEbF9C75qdi7DFG7G9CF/8k0Px6fxJk8C5fYl+12xfYiwO7I+jLd/OwfV4Wqe7fueiJ36IftlMtsyp8zB/krn7ht9nK6BBH6fJ4+zI9+//IYm/X/4FKkbhZgy2xDsAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAA5l6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAOI2FVTuOXEcMvIrDHaCnxf9HCwECxoEiK3Jk6BxKdHgX+82uFwYMZ29qSXaxWOQ+Pj2+PD49/np8/frtx8vj9vz4Ph/ffvDj5cv32x9vf33crt+Ie7x/Pf/4XuE96g0Z7Pbv8MdH+J/ct58ffv1Hzv/DH1B+/Pbr5c68S03X3bYKE6/XO9M28hwos6gB9ZZ2q3XXndGagHJXRMlEiYT5gRCjqOU7WmSg2uHlvO6xk6gnMTZzRw7E1gh/RXwRM8rnDna+IIRbTy02iuGlu7qLn4lVgMCwm3QS1cmmvKBET63YrVTDnrew4gtR5m52oCBBPAg2megpT84W6zQreJC2hMu0mCCPzIHYs8lPEBHeYwhilYf6ND1Im3hNCHsFsnSLUsSTZeIxw/N9JMggB0eH+gXFwIcy5SDloD0CtBCDdEClqKMSYkACSLMOG0NwJ2KQHu2TVOwU6xVjEtLTu/RptLel04mR5mkUAw9lHzpi4TpZ6cYy8w4Gn8kiaBDHJ4pG5yk1zG9BcYG6NUiEgemdYBxV9VOaHR+A2jnrIGkak6aYzwjGUF5yQW+rYp5CMAuYIVRC9KII0xiQglB5njfn0oXXyf0wbCLYQ7a32vTQkqA1LTDVBAho5YJhIzhOUec2RGBgfIjUCGyb4MeL66iAiUr1KcnQrhFQmElfGlTIcviQkmcicBrsELCvoCdMurWkADSGWDPXZKhWm0umV91eYzcsj6ccbzBrOiI6ZBqT2QATRLR5HWOGGbyJEHLlPgisjt4aVdAl7AylIFBO4crZ3TE9h8KHDdYsdZZFEtuFGMPSHKAwwkZlSMfXWjha83UWeHYADjDlwxiGmrnPVcATUxibQ1cMFhkuGYn1HId5quU83hV9La8lDgEUQV/PM1A04sHoM2MgSdIjOEQaP81Wo5yDwkgyv02EZ8qSes4X+sXpUCAVWnqQTrSFLHUFhbln6omtwG6ZjTdmEzNxZrACsNWFFAgnpl9meh2zcfw4DDp6nMo4lDlGVXdM/ATNHGugZrRxcXZGXzOA8dMEgf8sAW+szmkelHAoeTZFQPIoBAv43EDBNOxJykNlEExlJj/NBQY8q8rjk6Na0+wRoNarOpxbzefMw344Pbf188/PjuHqz98/Y6JoPBajM1mCBcFe4Tz4UmypLJv/CMvAupbDYr0Cu14rcScSXin99TfOunl2PVczkAAAAABJRU5ErkJggg==) |
関連化合物
ヒル方式による化学式 C62H111N11O12
|
モル質量(molar mass)とモル重量(molar weight)の計算化合物のモル質量を計算するには、化合物の式を入力し、「計算」をクリックします。 入力には以下のものを使用できます:
- 任意の化学元素. 化学記号は最初の文字を大文字にし、残りの文字は小文字で入力します。 Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 官能基:D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 括弧 () または括弧 []。
- 化合物の慣用名.
モル質量の計算の例: NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 硝酸, 過マンガン酸カリウム, エタノール, フルクトース, カフェイン, 水.
.モルマス計算機は、一般的な化合物名、ヒル式、元素組成、質量パーセント組成、原子パーセント組成を表示し、重量からモル数への変換とその逆が可能です。
分子量(molecular weight)と分子質量(molecular mass)の計算
化合物の分子量を計算するには、化合物の式を入力し、各元素の後に同位体の質量数を角括弧で囲んで指定します。
分子量計算の例:
C[14]O[16]2,
S[34]O[16]2.
定義
- 分子質量 (分子量) は、物質1分子の質量であり、統一原子質量単位(u)で表現されます。 (1 uは炭素12の1原子の質量の12分の1に等しい)
- モル質量は、物質の1モルの質量であり、g/molの単位で表されます。
- モルは、原子や分子などの非常に小さな実体を大量に測定するための標準的な科学単位です。 1 モルには正確に 6.022 × 10 23 個の粒子 (アボガドロ数) が含まれています。
モル質量を計算する手順
- 化合物を特定する:化合物の化学式を書き留めます。たとえば、水は H 2 O であり、2 つの水素原子と 1 つの酸素原子が含まれていることを意味します。
- 原子量を調べる:化合物に存在する各元素の原子量を調べます。原子質量は通常周期表に記載されており、原子質量単位 (amu) で表されます。
- 各元素のモル質量を計算します。各元素の原子質量に、化合物内のその元素の原子の数を掛けます。
- それらを加算します。ステップ 3 の結果を加算して、化合物の総モル質量を取得します。
例: モル質量の計算
二酸化炭素 (CO 2 ) のモル質量を計算してみましょう。
- 炭素 (C) の原子質量は約 12.01 amu です。
- 酸素 (O) の原子質量は約 16.00 amu です。
- CO 2には 1 つの炭素原子と 2 つの酸素原子があります。
- 二酸化炭素のモル質量は、12.01 + (2 × 16.00) = 44.01 g/mol です。
各原子量は NISTの記事を参照しています。 関連:アミノ酸の分子量 |